-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfeedback_noise_test.py
300 lines (261 loc) · 12.5 KB
/
feedback_noise_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import numpy as np
import os
import time
import json
import pickle
from scipy.stats import spearmanr
import pandas as pd
import argparse
from singleVis.utils import generate_random_trajectory, generate_random_trajectory_momentum
def add_noise(rate, acc_idxs, rej_idxs):
if rate == 0:
return acc_idxs, rej_idxs
acc_noise = np.random.choice(len(acc_idxs), size=int(len(acc_idxs)*rate))
acc_noise = acc_idxs[acc_noise]
new_acc = np.setdiff1d(acc_idxs, acc_noise)
rej_noise = np.random.choice(len(rej_idxs), size=int(len(rej_idxs)*rate))
rej_noise = rej_idxs[rej_noise]
new_rej = np.setdiff1d(rej_idxs, rej_noise)
new_acc = np.concatenate((new_acc, rej_noise), axis=0)
new_rej = np.concatenate((new_rej, acc_noise), axis=0)
return new_acc, new_rej
def init_sampling(tm, method, round, budget):
print("Feedback sampling initialization ({}):".format(method))
init_rate = list()
for _ in range(round):
correct = np.array([]).astype(np.int32)
wrong = np.array([]).astype(np.int32)
selected,_ = tm.sample_batch_init(correct, wrong, budget)
c = np.intersect1d(selected, noise_idxs)
init_rate.append(len(c)/budget)
print("Success Rate:\t{:.4f}".format(sum(init_rate)/len(init_rate)))
return sum(init_rate)/len(init_rate)
def feedback_sampling(tm, method, round, budget, noise_rate=0.0, replace_init=None):
print("--------------------------------------------------------")
print("({}) with noise rate {}:\n".format(method, noise_rate))
rate = np.zeros(round)
correct = np.array([]).astype(np.int32)
wrong = np.array([]).astype(np.int32)
selected,_ = tm.sample_batch_init(correct, wrong, budget)
c = np.intersect1d(selected, noise_idxs)
w = np.setdiff1d(selected, c)
correct = np.concatenate((correct, c), axis=0)
wrong = np.concatenate((wrong, w), axis=0)
if replace_init is None:
rate[0] = len(correct)/float(budget)
else:
rate[0] = replace_init
# inject noise
correct, wrong = add_noise(noise_rate, correct, wrong)
for r in range(1, round, 1):
selected,_, coef_ = tm.sample_batch(correct, wrong, budget, True)
c = np.intersect1d(selected, noise_idxs)
w = np.setdiff1d(selected, c)
rate[r] = len(c)/budget
# inject noise
c, w = add_noise(noise_rate, c, w)
correct = np.concatenate((correct, c), axis=0)
wrong = np.concatenate((wrong, w), axis=0)
ac_rate = np.array([rate[:i].mean() for i in range(1, len(rate)+1)])
# print("Success Rate:{:.3f}\n{}\n".format(ac_rate[-1], ac_rate))
print("Feature Importance:\t{}\n".format(coef_))
return ac_rate, coef_
def feedback_sampling_efficiency(tm, method, round, budget, repeat, noise_rate=0.0):
print("--------------------------------------------------------")
print("({}) with noise rate {}:\n".format(method, noise_rate))
all_time_cost = np.zeros(round)
for _ in range(repeat):
time_cost = np.zeros(round)
correct = np.array([]).astype(np.int32)
wrong = np.array([]).astype(np.int32)
t0 = time.time()
selected,_ = tm.sample_batch_init(correct, wrong, budget)
t1 = time.time()
c = np.intersect1d(selected, noise_idxs)
w = np.setdiff1d(selected, c)
correct = np.concatenate((correct, c), axis=0)
wrong = np.concatenate((wrong, w), axis=0)
time_cost[0] = t1-t0
# inject noise
correct, wrong = add_noise(noise_rate, correct, wrong)
for r in range(1, round, 1):
t0 = time.time()
selected,_,_ = tm.sample_batch(correct, wrong, budget, True)
t1 = time.time()
c = np.intersect1d(selected, noise_idxs)
w = np.setdiff1d(selected, c)
time_cost[r] = t1-t0
# inject noise
c, w = add_noise(noise_rate, c, w)
correct = np.concatenate((correct, c), axis=0)
wrong = np.concatenate((wrong, w), axis=0)
all_time_cost = all_time_cost + time_cost
all_time_cost = all_time_cost/repeat
print("Time Cost:\n{}\n".format(all_time_cost))
return all_time_cost
def record(old_array, to_be_record, task, dataset, method, rate, tolerance):
for i, v in enumerate(to_be_record, start=1):
if old_array is None:
old_array = np.array([task, dataset, method, rate, tolerance, str(i), str(v)])
else:
old_array = np.vstack((old_array, np.array([task, dataset, method, rate, tolerance, str(i), str(v)])))
return old_array
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, choices=["cifar10","mnist","fmnist"])
parser.add_argument('--noise_rate', type=int, choices=[5,10,20])
parser.add_argument("--tolerance", nargs="+", type=float)
parser.add_argument('--repeat', type=int, default=100, help="repeat x times to evaluate efficiency")
parser.add_argument("--budget", type=int, default=50)
parser.add_argument("--init_round", type=int, default=10000)
parser.add_argument("--round", type=int, default=10, help="Feedback round")
args = parser.parse_args()
# tensorflow
visible_device = "0,1,2,3"
os.environ["CUDA_VISIBLE_DEVICES"] = visible_device
DATASET = args.dataset
NOISE_RATE = args.noise_rate
BUDGET = args.budget
TOLERANCE = args.tolerance
ROUND = args.round
INIT_ROUND = args.init_round
REPEAT = args.repeat
print(DATASET, NOISE_RATE)
CONTENT_PATH = "/home/xianglin/projects/DVI_data/noisy/symmetric/{}/{}/".format(DATASET, NOISE_RATE)
with open(os.path.join(CONTENT_PATH, "config.json"), "r") as f:
config = json.load(f)
config = config["tfDVI"]
path = "{}/clean_label.json".format(CONTENT_PATH)
with open(path, "r") as f:
clean_label = np.array(json.load(f))
path = "{}/noisy_label.json".format(CONTENT_PATH)
with open(path, "r") as f:
noisy_label = np.array(json.load(f))
TRAINING_PARAMETER = config["TRAINING"]
LEN = TRAINING_PARAMETER["train_num"]
# Evaluate
noise_idxs = np.argwhere(clean_label!=noisy_label).squeeze()
with open(os.path.join(CONTENT_PATH, 'tfDVI_sample_recommender.pkl'), 'rb') as f:
dvi_tm = pickle.load(f)
with open(os.path.join(CONTENT_PATH, 'TimeVis_sample_recommender.pkl'), 'rb') as f:
timevis_tm = pickle.load(f)
# #############################################
# # score comparing #
# #############################################
# dvi_p_score = dvi_tm._sample_p_scores
# dvi_v_score = dvi_tm._sample_v_scores
# dvi_a_score = dvi_tm._sample_a_scores
# timevis_p_score = timevis_tm._sample_p_scores
# timevis_v_score = timevis_tm._sample_v_scores
# timevis_a_score = timevis_tm._sample_a_scores
# p_corr,_ = spearmanr(dvi_p_score, timevis_p_score)
# v_corr,_ = spearmanr(dvi_v_score, timevis_v_score)
# a_corr,_ = spearmanr(dvi_a_score, timevis_a_score)
# print("Position ranking corr:\t{:.3f}".format(p_corr))
# print("Velocity ranking corr:\t{:.3f}".format(v_corr))
# print("Accelera ranking corr:\t{:.3f}".format(a_corr))
data = None
#############################################
# init #
#############################################
# random init
print("Random sampling init")
s_rate = list()
pool = np.arange(LEN)
for _ in range(INIT_ROUND):
s_idxs = np.random.choice(pool,size=BUDGET,replace=False)
s_rate.append(len(np.intersect1d(s_idxs, noise_idxs))/BUDGET)
print("Success Rate:\t{:.4f}".format(sum(s_rate)/len(s_rate)))
random_init = sum(s_rate)/len(s_rate)
# dvi init
dvi_init = init_sampling(dvi_tm, method="tfDVI", round=INIT_ROUND, budget=BUDGET)
# timevis init
timevis_init = init_sampling(timevis_tm, method="TimeVis", round=INIT_ROUND, budget=BUDGET)
#############################################
# Feedback #
#############################################
# random Feedback
print("--------------------------------------------------------")
print("Random sampling feedback:\n")
random_rate = np.zeros(ROUND)
pool = np.arange(LEN)
for r in range(ROUND):
s_idxs = np.random.choice(pool,size=BUDGET,replace=False)
random_rate[r] = len(np.intersect1d(s_idxs, noise_idxs))/BUDGET
pool = np.setdiff1d(pool, s_idxs)
random_rate[0] = random_init
ac_random_rate = np.array([random_rate[:i].mean() for i in range(1, len(random_rate)+1)])
print("Random Success Rate:{:.3f}\n{}\n".format(ac_random_rate[-1], ac_random_rate))
data = record(data, ac_random_rate, "feedback", DATASET, "Random", NOISE_RATE, 0.0)
# dvi Feedback
ac_dvi_rate, dvi_coef_ = feedback_sampling(tm=dvi_tm, method="tfDVI", round=ROUND, budget=BUDGET, replace_init=dvi_init)
data = record(data, ac_dvi_rate, "feedback", DATASET, "DVI", NOISE_RATE, 0.0)
data = record(data, dvi_coef_, "FI", DATASET, "DVI", NOISE_RATE, 0.0)
# timevis Feedback
ac_tv_rate, tv_coef_ = feedback_sampling(tm=timevis_tm, method="TimeVis", round=ROUND, budget=BUDGET, replace_init=timevis_init)
data = record(data, ac_tv_rate, "feedback", DATASET, "TimeVis", NOISE_RATE, 0.0)
data = record(data, tv_coef_, "FI", DATASET, "TimeVis", NOISE_RATE, 0.0)
#############################################
# Noise Feedback #
#############################################
for tol in TOLERANCE:
# dvi Feedback with noise
ac_dvi_rate, dvi_coef_ = feedback_sampling(tm=dvi_tm, method="tfDVI", round=ROUND, budget=BUDGET, noise_rate=tol, replace_init=dvi_init)
data = record(data, ac_dvi_rate, "feedback", DATASET, "DVI", NOISE_RATE, tol)
data = record(data, dvi_coef_, "FI", DATASET, "DVI", NOISE_RATE, tol)
# timevis Feedback with noise
ac_tv_rate, tv_coef_ = feedback_sampling(tm=timevis_tm, method="TimeVis", round=ROUND, budget=BUDGET, noise_rate=tol, replace_init=timevis_init)
data = record(data, ac_tv_rate, "feedback", DATASET, "TimeVis", NOISE_RATE, tol)
data = record(data, tv_coef_, "FI", DATASET, "TimeVis", NOISE_RATE, tol)
#############################################
# Feedback Efficiency #
#############################################
# dvi Feedback
dvi_c = feedback_sampling_efficiency(tm=dvi_tm, method="tfDVI", round=ROUND, budget=BUDGET, repeat=REPEAT)
data = record(data, dvi_c, "efficiency", DATASET, "DVI", NOISE_RATE, 0.0)
# timevis Feedback
timevis_c = feedback_sampling_efficiency(tm=timevis_tm, method="TimeVis", round=ROUND, budget=BUDGET, repeat=REPEAT)
data = record(data, timevis_c, "efficiency", DATASET, "TimeVis", NOISE_RATE, 0.0)
#############################################
# Random Anomaly #
#############################################
xs = dvi_tm.embeddings_2d[:, -dvi_tm.period:, 0]
ys = dvi_tm.embeddings_2d[:, -dvi_tm.period:, 1]
vx = xs[:, 1:]-xs[:, :-1]
vy = ys[:, 1:]-ys[:, :-1]
for _ in range(100):
# new_sample = generate_random_trajectory(xs.min(), ys.min(), xs.max(), ys.max(), dvi_tm.period)
idx = np.random.choice(len(xs), 1)[0]
init_position = [xs[idx, 0], ys[idx, 0]]
vx_mean = vx[idx]+1
vy_mean = vy[idx]-1
new_sample = generate_random_trajectory_momentum(init_position, dvi_tm.period ,1,.1, vx_mean, vy_mean)
dvi_new_score = dvi_tm.score_new_sample(new_sample)
# data = record(data, dvi_new_score, "RA", DATASET, "DVI", NOISE_RATE, 0.0)
data = record(data, dvi_new_score, "RA_M", DATASET, "DVI", NOISE_RATE, 0.0)
xs = timevis_tm.embeddings_2d[:, -timevis_tm.period:, 0]
ys = timevis_tm.embeddings_2d[:, -timevis_tm.period:, 1]
vx = xs[:, 1:]-xs[:, :-1]
vy = ys[:, 1:]-ys[:, :-1]
for _ in range(100):
# new_sample = generate_random_trajectory(xs.min(), ys.min(), xs.max(), ys.max(), timevis_tm.period)
idx = np.random.choice(len(xs), 1)[0]
init_position = [xs[idx, 0], ys[idx, 0]]
vx_mean = vx[idx]+1
vy_mean = vy[idx]-1
new_sample = generate_random_trajectory_momentum(init_position, timevis_tm.period ,1,.1, vx_mean, vy_mean)
tv_new_score = timevis_tm.score_new_sample(new_sample)
# data = record(data, tv_new_score, "RA", DATASET, "TimeVis", NOISE_RATE, 0.0)
data = record(data, tv_new_score, "RA_M", DATASET, "TimeVis", NOISE_RATE, 0.0)
#############################################
# Save #
#############################################
# read results
eval_path = "/home/xianglin/projects/DVI_data/noisy/symmetric/feedback.xlsx"
col = np.array(["task", "dataset", "method", "rate", "tolerance", "iter", "eval"])
if os.path.exists(eval_path):
df = pd.read_excel(eval_path, index_col=0, dtype={"task":str, "dataset":str, "method":str, "rate":int, "tolerance":float, "iter":int, "eval":float})
else:
df = pd.DataFrame({}, columns=col)
df_curr = pd.DataFrame(data, columns=col)
df = df.append(df_curr, ignore_index=True)
df.to_excel(eval_path)