-
Notifications
You must be signed in to change notification settings - Fork 49
/
graphnnSiamese.py
147 lines (123 loc) · 5.55 KB
/
graphnnSiamese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import tensorflow as tf
#import matplotlib.pyplot as plt
import numpy as np
import datetime
from sklearn.metrics import roc_auc_score
def graph_embed(X, msg_mask, N_x, N_embed, N_o, iter_level, Wnode, Wembed, W_output, b_output):
#X -- affine(W1) -- ReLU -- (Message -- affine(W2) -- add (with aff W1)
# -- ReLU -- )* MessageAll -- output
node_val = tf.reshape(tf.matmul( tf.reshape(X, [-1, N_x]) , Wnode),
[tf.shape(X)[0], -1, N_embed])
cur_msg = tf.nn.relu(node_val) #[batch, node_num, embed_dim]
for t in range(iter_level):
#Message convey
Li_t = tf.matmul(msg_mask, cur_msg) #[batch, node_num, embed_dim]
#Complex Function
cur_info = tf.reshape(Li_t, [-1, N_embed])
for Wi in Wembed:
if (Wi == Wembed[-1]):
cur_info = tf.matmul(cur_info, Wi)
else:
cur_info = tf.nn.relu(tf.matmul(cur_info, Wi))
neigh_val_t = tf.reshape(cur_info, tf.shape(Li_t))
#Adding
tot_val_t = node_val + neigh_val_t
#Nonlinearity
tot_msg_t = tf.nn.tanh(tot_val_t)
cur_msg = tot_msg_t #[batch, node_num, embed_dim]
g_embed = tf.reduce_sum(cur_msg, 1) #[batch, embed_dim]
output = tf.matmul(g_embed, W_output) + b_output
return output
class graphnn(object):
def __init__(self,
N_x,
Dtype,
N_embed,
depth_embed,
N_o,
ITER_LEVEL,
lr,
device = '/gpu:0'
):
self.NODE_LABEL_DIM = N_x
tf.reset_default_graph()
with tf.device(device):
Wnode = tf.Variable(tf.truncated_normal(
shape = [N_x, N_embed], stddev = 0.1, dtype = Dtype))
Wembed = []
for i in range(depth_embed):
Wembed.append(tf.Variable(tf.truncated_normal(
shape = [N_embed, N_embed], stddev = 0.1, dtype = Dtype)))
W_output = tf.Variable(tf.truncated_normal(
shape = [N_embed, N_o], stddev = 0.1, dtype = Dtype))
b_output = tf.Variable(tf.constant(0, shape = [N_o], dtype = Dtype))
X1 = tf.placeholder(Dtype, [None, None, N_x]) #[B, N_node, N_x]
msg1_mask = tf.placeholder(Dtype, [None, None, None])
#[B, N_node, N_node]
self.X1 = X1
self.msg1_mask = msg1_mask
embed1 = graph_embed(X1, msg1_mask, N_x, N_embed, N_o, ITER_LEVEL,
Wnode, Wembed, W_output, b_output) #[B, N_x]
X2 = tf.placeholder(Dtype, [None, None, N_x])
msg2_mask = tf.placeholder(Dtype, [None, None, None])
self.X2 = X2
self.msg2_mask = msg2_mask
embed2 = graph_embed(X2, msg2_mask, N_x, N_embed, N_o, ITER_LEVEL,
Wnode, Wembed, W_output, b_output)
label = tf.placeholder(Dtype, [None, ]) #same: 1; different:-1
self.label = label
self.embed1 = embed1
cos = tf.reduce_sum(embed1*embed2, 1) / tf.sqrt(tf.reduce_sum(
embed1**2, 1) * tf.reduce_sum(embed2**2, 1) + 1e-10)
diff = -cos
self.diff = diff
loss = tf.reduce_mean( (diff + label) ** 2 )
self.loss = loss
optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss)
self.optimizer = optimizer
def say(self, string):
print string
if self.log_file != None:
self.log_file.write(string+'\n')
def init(self, LOAD_PATH, LOG_PATH):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
saver = tf.train.Saver()
self.sess = sess
self.saver = saver
self.log_file = None
if (LOAD_PATH is not None):
if LOAD_PATH == '#LATEST#':
checkpoint_path = tf.train.latest_checkpoint('./')
else:
checkpoint_path = LOAD_PATH
saver.restore(sess, checkpoint_path)
if LOG_PATH != None:
self.log_file = open(LOG_PATH, 'a+')
self.say('{}, model loaded from file: {}'.format(
datetime.datetime.now(), checkpoint_path))
else:
sess.run(tf.global_variables_initializer())
if LOG_PATH != None:
self.log_file = open(LOG_PATH, 'w')
self.say('Training start @ {}'.format(datetime.datetime.now()))
def get_embed(self, X1, mask1):
vec, = self.sess.run(fetches=[self.embed1],
feed_dict={self.X1:X1, self.msg1_mask:mask1})
return vec
def calc_loss(self, X1, X2, mask1, mask2, y):
cur_loss, = self.sess.run(fetches=[self.loss], feed_dict={self.X1:X1,
self.X2:X2,self.msg1_mask:mask1,self.msg2_mask:mask2,self.label:y})
return cur_loss
def calc_diff(self, X1, X2, mask1, mask2):
diff, = self.sess.run(fetches=[self.diff], feed_dict={self.X1:X1,
self.X2:X2, self.msg1_mask:mask1, self.msg2_mask:mask2})
return diff
def train(self, X1, X2, mask1, mask2, y):
loss,_ = self.sess.run([self.loss,self.optimizer],feed_dict={self.X1:X1,
self.X2:X2,self.msg1_mask:mask1,self.msg2_mask:mask2,self.label:y})
return loss
def save(self, path, epoch=None):
checkpoint_path = self.saver.save(self.sess, path, global_step=epoch)
return checkpoint_path