-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathgeneration.py
159 lines (129 loc) · 4.29 KB
/
generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import abc
import scipy.stats
import numpy as np
class Intensity(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def getValue(self, t):
return
class IntensitySumGaussianKernel(Intensity):
def __init__(self, k=2, centers=[2, 4], stds=[1, 1], coefs= [1, 1]):
self.k = k
self.centers = centers
self.stds = stds
self.coefs = coefs
def getValue(self, t):
inten = 0
for i in range(self.k):
inten += self.coefs[i] * scipy.stats.norm.pdf(t, self.centers[i], self.stds[i])
return inten
def getUpperBound(self, from_t, to_t):
max_val = max(self.getValue(from_t), self.getValue(to_t))
for i in range(self.k):
max_val = max(max_val, self.getValue(self.centers[i]))
for i in range(self.k-1):
point = (self.coefs[i]*self.centers[i]/self.stds[i] + self.coefs[i+1]*self.centers[i+1]/self.stds[i+1])/\
(self.coefs[i]/self.stds[i] + self.coefs[i+1]/self.stds[i+1])
max_val = max(max_val, self.getValue(point))
return max_val
class IntensityHomogenuosPoisson(Intensity):
def __init__(self, lam):
self.lam = lam
def getValue(self, t):
return self.lam
def getUpperBound(self, from_t, to_t):
return self.lam
def generate_sample(intensity, T, n):
Sequnces = []
i = 0
while True:
seq = []
t = 0
while True:
intens1 = intensity.getUpperBound(t,T)
dt = np.random.exponential(1/intens1)
new_t = t + dt
if new_t > T:
break
intens2 = intensity.getValue(new_t)
u = np.random.uniform()
if intens2/intens1 >= u:
seq.append(new_t)
t = new_t
if len(seq)>1:
Sequnces.append(seq)
i+=1
if i==n:
break
return Sequnces
class MarkedIntensity(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def getValue(self, t, inds=1):
return
class MarkedIntensityIndepenent(MarkedIntensity):
def __init__(self, dim=1):
self.dim = dim
self.intensities = [None]*dim
def initialize(self, intensity, dim=1):
self.intensities[dim] = intensity
def getValue(self, t, inds=1):
l = len(inds)
inten = [0]*l
for i in range(l):
inten[i] += 1+self.intensities[inds[i]].getValue(t)
return inten
def getUpperBound(self, from_t, to_t, inds=1):
l = len(inds)
inten = [0]*l
for i in range(l):
inten[i] = self.intensities[inds[i]].getUpperBound(from_t, to_t)
return inten
class MarkedIntensityHomogenuosPoisson(Intensity):
def __init__(self, dim=1):
self.dim = dim
self.lam = [None]*dim
def initialize(self, lam, dim=1):
self.lam[dim] = lam
def getValue(self, t, inds):
l = len(inds)
inten = [0]*l
for i in range(l):
inten[i] = self.lam[i]
return inten
def getUpperBound(self, from_t, to_t, inds):
l = len(inds)
inten = [0]*l
for i in range(l):
inten[i] = self.lam[i]
return inten
def generate_samples_marked(intensity, T, n):
U = intensity.dim
Sequences = []
inds = np.arange(U)
for i in range(n):
seq = []
t = 0
while True:
intens1 = intensity.getUpperBound(t,T,inds)
#print(intens1)
dt = np.random.exponential(1/sum(intens1))
#print(dt)
new_t = t + dt
#print(new_t)
if new_t > T:
break
intens2 = intensity.getValue(new_t, inds)
#print(intens2)
u = np.random.uniform()
if sum(intens2)/sum(intens1) > u:
#print(intens2)
x_sum = sum(intens2)
norm_i = [ x/x_sum for x in intens2]
#print(norm_i)
dim = np.nonzero(np.random.multinomial(1, norm_i))
seq.append([np.asscalar(dim[0]),new_t])
t = new_t
if len(seq)>1:
Sequences.append(seq)
return Sequences