forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
211 lines (187 loc) · 8.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import sys
import argparse
import ast
import logging
import paddle.fluid as fluid
from utils.train_utils import train_with_dataloader
import models
from utils.config_utils import *
from reader import get_reader
from metrics import get_metrics
from utils.utility import check_cuda
from utils.utility import check_version
logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser("Paddle Video train script")
parser.add_argument('--model_name',
type=str,
default='AttentionCluster',
help='name of model to train.')
parser.add_argument('--config',
type=str,
default='configs/attention_cluster.txt',
help='path to config file of model')
parser.add_argument(
'--batch_size',
type=int,
default=None,
help='training batch size. None to use config file setting.')
parser.add_argument(
'--learning_rate',
type=float,
default=None,
help='learning rate use for training. None to use config file setting.')
parser.add_argument('--pretrain',
type=str,
default=None,
help='path to pretrain weights.')
parser.add_argument('--use_gpu',
type=ast.literal_eval,
default=True,
help='default use gpu.')
parser.add_argument('--no_memory_optimize',
action='store_true',
default=False,
help='whether to use memory optimize in train')
parser.add_argument('--epoch',
type=int,
default=None,
help='epoch number, 0 for read from config file')
parser.add_argument('--valid_interval',
type=int,
default=1,
help='validation epoch interval, 0 for no validation.')
parser.add_argument('--save_dir',
type=str,
default=os.path.join('data', 'checkpoints'),
help='directory name to save train snapshoot')
parser.add_argument('--log_interval',
type=int,
default=1,
help='mini-batch interval to log.')
parser.add_argument('--fix_random_seed',
type=ast.literal_eval,
default=False,
help='If set True, enable continuous evaluation job.')
args = parser.parse_args()
return args
def train(args):
# parse config
config = parse_config(args.config)
train_config = merge_configs(config, 'train', vars(args))
valid_config = merge_configs(config, 'valid', vars(args))
print_configs(train_config, 'Train')
train_model = models.get_model(args.model_name, train_config, mode='train')
valid_model = models.get_model(args.model_name, valid_config, mode='valid')
# build model
startup = fluid.Program()
train_prog = fluid.Program()
if args.fix_random_seed:
startup.random_seed = 1000
train_prog.random_seed = 1000
with fluid.program_guard(train_prog, startup):
with fluid.unique_name.guard():
train_model.build_input(use_dataloader=True)
train_model.build_model()
# for the input, has the form [data1, data2,..., label], so train_feeds[-1] is label
train_feeds = train_model.feeds()
train_fetch_list = train_model.fetches()
train_loss = train_fetch_list[0]
optimizer = train_model.optimizer()
optimizer.minimize(train_loss)
train_dataloader = train_model.dataloader()
valid_prog = fluid.Program()
with fluid.program_guard(valid_prog, startup):
with fluid.unique_name.guard():
valid_model.build_input(use_dataloader=True)
valid_model.build_model()
valid_feeds = valid_model.feeds()
valid_fetch_list = valid_model.fetches()
valid_dataloader = valid_model.dataloader()
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup)
if args.pretrain:
train_model.load_pretrain_params(exe, args.pretrain, train_prog)
build_strategy = fluid.BuildStrategy()
build_strategy.enable_inplace = True
exec_strategy = fluid.ExecutionStrategy()
compiled_train_prog = fluid.compiler.CompiledProgram(
train_prog).with_data_parallel(loss_name=train_loss.name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
compiled_valid_prog = fluid.compiler.CompiledProgram(
valid_prog).with_data_parallel(share_vars_from=compiled_train_prog,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
# get reader
bs_denominator = 1
if args.use_gpu:
# check number of GPUs
gpus = os.getenv("CUDA_VISIBLE_DEVICES", "")
if gpus == "":
pass
else:
gpus = gpus.split(",")
num_gpus = len(gpus)
assert num_gpus == train_config.TRAIN.num_gpus, \
"num_gpus({}) set by CUDA_VISIBLE_DEVICES " \
"shoud be the same as that " \
"set in {}({})".format(
num_gpus, args.config, train_config.TRAIN.num_gpus)
bs_denominator = train_config.TRAIN.num_gpus
train_config.TRAIN.batch_size = int(train_config.TRAIN.batch_size /
bs_denominator)
valid_config.VALID.batch_size = int(valid_config.VALID.batch_size /
bs_denominator)
train_reader = get_reader(args.model_name.upper(), 'train', train_config)
valid_reader = get_reader(args.model_name.upper(), 'valid', valid_config)
# get metrics
train_metrics = get_metrics(args.model_name.upper(), 'train', train_config)
valid_metrics = get_metrics(args.model_name.upper(), 'valid', valid_config)
epochs = args.epoch or train_model.epoch_num()
exe_places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
train_dataloader.set_sample_list_generator(train_reader, places=exe_places)
valid_dataloader.set_sample_list_generator(valid_reader, places=exe_places)
train_with_dataloader(exe,
train_prog,
compiled_train_prog,
train_dataloader,
train_fetch_list,
train_metrics,
epochs=epochs,
log_interval=args.log_interval,
valid_interval=args.valid_interval,
save_dir=args.save_dir,
save_model_name=args.model_name,
fix_random_seed=args.fix_random_seed,
compiled_test_prog=compiled_valid_prog,
test_dataloader=valid_dataloader,
test_fetch_list=valid_fetch_list,
test_metrics=valid_metrics)
if __name__ == "__main__":
args = parse_args()
# check whether the installed paddle is compiled with GPU
check_cuda(args.use_gpu)
check_version()
logger.info(args)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
train(args)