-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_efficient_Kalman.py
261 lines (210 loc) · 8.75 KB
/
test_efficient_Kalman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import argparse
import time
import signal
import cv2
import os
import torch
from Arducamlib.Arducam import *
from Arducamlib.ImageConvert import *
from classification import efficient_model
def judge_from_window(pos_list):
count = {}
for i in set(pos_list):
count[i] = pos_list.count(i)
max_direction = max(count, key=count.get)
return max_direction
def is_mostly_white(img, threshold):
# 对图片进行灰度化,将三通道变成单通道
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 计算图片中所有像素的总和
total = np.sum(img)
# 计算图片中所有元素的个数
count = img.size
# 计算平均值,即每个元素的平均像素值
mean = total / count
# 如果平均值大于阈值,则返回True,否则返回False
return mean > threshold
def Kalman(x_prev, x_next_ob, u_prev, P_prev, H, Q, R, F, B):
"""
x: [x, y, dx, dy].T
u: [0]
F: (4,4)
P: (4,4)
Q: (4,4)
H: (4,4)
"""
# Predict
x_next_bar = F @ x_prev.T + B @ u_prev
P_next_bar = F @ P_prev @ F.T + Q
# Observe
z_next = H @ x_next_ob
# Update
K_next = P_next_bar @ H.T @ np.linalg.inv((H @ P_next_bar @ H.T + R))
x_next = x_next_bar + K_next @ (z_next - H @ x_next_bar)
P_next = (np.eye(4) - K_next @ H) @ P_next_bar
return x_next, P_next
def run(
config_path,
weight_path,
model_type='onnx',
data_path = None,
device='cpu',
half=False,
imgsz=32
):
# Set camera config
config_file = config_path
verbose = False
# preview_width = -1
no_preview = False
# Openvideo
video = cv2.VideoCapture('/home/yunhaoshui/FootKick/test.mp4')
conf_threshold = 0.7
ret = True
prev_isempty = True
action = None
window_size_action = 1
window_size_point = 5
from collections import deque
window = deque(maxlen=window_size_action)
window_b = deque(maxlen=window_size_point)
window_r = deque(maxlen=window_size_point)
# Initialize efficientnet
model = efficient_model.build_model(weight_path, device)
total_time = []
cls_time = []
LK_time = []
# Set Kalman filter
F = np.array(
[[1,0,0,1],
[0,1,0,1],
[0,0,1,0],
[0,0,0,1]]
)
B = np.array(
[[0,0,0,0],
[0,0,0,0],
[0,0,0,0],
[0,0,0,0]]
)
H = np.eye(4)
R = np.eye(4) *0.1
Q = np.array([[0.01, 0, 0, 0], [0, 0.01, 0, 0], [0, 0, 0.01, 0], [0, 0, 0, 0.01]])
P_prev_b = np.array(
[[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]]
)
P_prev_r = np.array(
[[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]]
)
# Begin detection
while ret:
ret, image = video.read()
frame_count=video.get(cv2.CAP_PROP_FRAME_COUNT)
# ret, data, cfg = camera.read()
# display_fps(0)
if ret:
# image = convert_image(data, cfg, camera.color_mode)
image = np.array(image[:,:,:3])
image0 = np.array(image)
start_time0 = time.time()
result = efficient_model.inference(model, image, imgsz)
cls = np.argmax(result)
end_time0 = time.time()
clstime = end_time0 - start_time0
# print('yolo time:',round((yolotime)*1000,2),'ms')
# image = preprocess.DBSCAN_denoise(image, 1.4,5)
dire_vec1 = np.array([])
position = None
white = is_mostly_white(image,245)
if white:
cv2.putText(image0, 'nothing', (200,20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,0), 3)
print('nothing')
position = None
if not white:
if cls == 0: # means not shoe
cv2.putText(image0, 'unshoe', (200,20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,0), 3)
print('not shoe')
position = None
if cls == 1: # means there exists a shoe
cv2.putText(image0, 'shoe', (200,20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,0), 3)
start_time = time.time()
cur = cv2.resize(image,(16,16))
mask_red = cur[:,:,0]
mask_blue = cur[:,:,2]
cur_r = np.argwhere(mask_red < 240)
cur_b = np.argwhere(mask_blue < 240)
center_b = cur_b.mean(axis=0) #(y,x)
center_r = cur_r.mean(axis=0)
if prev_isempty :
center_b_prev = center_b
center_r_prev = center_r
x_prev_b = np.append(center_b,[0,0],axis=0)
x_prev_r = np.append(center_r,[0,0],axis=0)
prev_isempty = False
else:
dxdy_blue = center_b - center_b_prev
dxdy_red = center_r - center_r_prev
x_next_ob_b = np.append(center_b,dxdy_blue,axis=0)
x_next_ob_r = np.append(center_r,dxdy_red,axis=0)
x_next_b, P_next_b = Kalman(x_prev_b, x_next_ob_b, np.array([0,0,0,0]).T, P_prev_b, H, Q, R, F, B)
x_next_r, P_next_r = Kalman(x_prev_r, x_next_ob_r, np.array([0,0,0,0]).T, P_prev_r, H, Q, R, F, B)
cv2.circle(image0, (int(x_next_b[1]*324/16), int(x_next_b[0]*248/16)), 10, (255, 0, 0), -1)
cv2.circle(image0, (int(x_next_r[1]*324/16), int(x_next_r[0]*248/16)), 10, (0, 0, 255), -1)
VEC = x_next_b-x_next_r
print(VEC)
dire_vec1 = np.copy(VEC)
dire_vec1[0] = VEC[1]
dire_vec1[1] = VEC[0]
dire = dire_vec1 if len(dire_vec1) !=0 else [0,0]
if abs(dire[0]) > abs(dire[1]):
if dire[0] > 0:
position = 'right'
if dire[0] <= 0:
position = 'left'
if abs(dire[0]) <= abs(dire[1]):
if dire[1] > 0:
position = 'up'
if dire[1] <= 0:
position = 'down'
end_time = time.time()
LKtime = end_time-start_time
x_prev_b = x_next_b
x_prev_r = x_next_r
P_prev_b = P_next_b
P_prev_r = P_next_r
center_b_prev = center_b
center_r_prev = center_r
end_time = time.time()
LKtime = end_time-start_time
# print('current direc:',position,'LK process time:', round((LK_time)*1000,2),'ms')
total_time.append(round((clstime+LKtime)*1000,2))
cls_time.append(round((clstime)*1000,2))
LK_time.append(round((LKtime)*1000,2))
print(
'total_time', round((clstime+LKtime)*1000,2),'ms',
' clstime:', round((clstime)*1000,2),'ms',
' direction time:',round((LKtime)*1000,2),'ms'
)
window.append(position)
if len(window) == window_size_action:
current_window = list(window)
action = judge_from_window(current_window)
cv2.putText(image0, str(action), (20,20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 3)
cv2.imshow("Arducam", image0) #248,324,4
cv2.waitKey(20)
else:
print('average process time:', np.average(total_time),'ms',
'average cls time:', np.average(cls_time),'ms',
'average direction time:', np.average(LK_time),'ms')
return
if __name__ == "__main__":
config_path = "/home/yunhaoshui/FootKick/resources/SDVS320_RGB_324x248.cfg"
weight_path = "/home/yunhaoshui/FootKick/resources/efficientnet_imgsz32.onnx"
data_path = '/home/yunhaoshui/FootKick/resources/footkick_openmmlab.yaml'
run(config_path=config_path, weight_path=weight_path, data_path =data_path)