forked from open-mmlab/mmyolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov7_l_swin_car_defect.py
118 lines (103 loc) · 3.74 KB
/
yolov7_l_swin_car_defect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
_base_ = './configs/yolov7/yolov7_l_syncbn_fast_8x16b-300e_coco.py'
data_root = '/root/mmyolo/autodl-tmp/defect_yolo'
work_dir = '/root/mmyolo/autodl-tmp/work_dirs/yolov7_m_swin_car_defect'
train_batch_size_per_gpu = 8
train_num_workers = 4 # 推荐使用 train_num_workers = nGPU x 4
val_batch_size_per_gpu = 8
val_num_workers = 4
max_epochs = 100
img_scale = (1280,1280)
save_epoch_intervals = 5
num_det_layers = 3
anchors = [[[12, 11], [20, 18], [39, 14]], [[34, 29], [69, 23], [37, 66]], [[62, 45], [130, 46], [158, 120]]]
class_name = ('paint_defect','shape_defect') # 根据 class_with_id.txt 类别信息,设置 class_name
num_classes = len(class_name)
metainfo = dict(
classes=class_name,
palette=[(220, 20, 60),(110, 50, 60)] # 画图时候的颜色,随便设置即可
)
checkpoint_file = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth' # noqa
model = dict(
backbone=dict(
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
type='mmdet.SwinTransformer', # 使用 mmdet 中的 SwinTransformer
embed_dims=96,
depths=[2, 2, 18, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
patch_norm=True,
out_indices=(1, 2, 3),
with_cp=False,
convert_weights=True,
init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)),
neck=dict(
in_channels=[192, 384, 768],
# The real output channel will be multiplied by 2
out_channels=[128, 256, 512]),
bbox_head=dict(
type='YOLOv7Head',
head_module=dict(
type='YOLOv7HeadModule',
num_classes=2,
num_base_priors=3),
loss_cls=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=0.3 * (num_classes / 80 * 3 / num_det_layers)),
prior_generator=dict(
type='mmdet.YOLOAnchorGenerator',
base_sizes=anchors))
)
train_dataloader = dict(
batch_size=train_batch_size_per_gpu,
num_workers=train_num_workers,
dataset=dict(
_delete_=True,
type='RepeatDataset',
# 数据量太少的话,可以使用 RepeatDataset ,在每个 epoch 内重复当前数据集 n 次,这里设置 5 是重复 5 次
times=5,
dataset=dict(
type=_base_.dataset_type,
data_root=data_root,
metainfo=metainfo,
ann_file='annotation/trainval.json',
data_prefix=dict(img='image/'),
filter_cfg=dict(filter_empty_gt=False, min_size=32),
pipeline=_base_.train_pipeline)))
val_dataloader = dict(
batch_size=val_batch_size_per_gpu,
num_workers=val_num_workers,
dataset=dict(
metainfo=metainfo,
data_root=data_root,
ann_file='annotation/trainval.json',
data_prefix=dict(img='image/')))
test_dataloader = val_dataloader
val_evaluator = dict(ann_file=data_root + '/annotation/trainval.json')
test_evaluator = val_evaluator
default_hooks = dict(
logger=dict(interval=1),
visualization=dict(draw=True, interval=1))
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=max_epochs,
val_interval=save_epoch_intervals,
dynamic_intervals=[(270, 1)])
visualizer = dict(vis_backends = [dict(type='WandbVisBackend')])
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='SGD',
lr=0.01,
momentum=0.937,
weight_decay=0.0005,
nesterov=True,
batch_size_per_gpu=train_batch_size_per_gpu),
constructor='YOLOv7OptimWrapperConstructor')