forked from chineseocr/chineseocr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
214 lines (175 loc) · 7.33 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# -*- coding: utf-8 -*-
"""
@author: lywen
"""
import os
import json
import time
import web
import numpy as np
import uuid
from PIL import Image
web.config.debug = True
filelock='file.lock'
if os.path.exists(filelock):
os.remove(filelock)
render = web.template.render('templates', base='base')
from config import *
from apphelper.image import union_rbox,adjust_box_to_origin,base64_to_PIL
from application import trainTicket,idcard
if yoloTextFlag =='keras' or AngleModelFlag=='tf' or ocrFlag=='keras':
if GPU:
os.environ["CUDA_VISIBLE_DEVICES"] = str(GPUID)
import tensorflow as tf
from keras import backend as K
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC'
config.gpu_options.per_process_gpu_memory_fraction = 0.3## GPU最大占用量
config.gpu_options.allow_growth = True##GPU是否可动态增加
K.set_session(tf.Session(config=config))
K.get_session().run(tf.global_variables_initializer())
else:
##CPU启动
os.environ["CUDA_VISIBLE_DEVICES"] = ''
if yoloTextFlag=='opencv':
scale,maxScale = IMGSIZE
from text.opencv_dnn_detect import text_detect
elif yoloTextFlag=='darknet':
scale,maxScale = IMGSIZE
from text.darknet_detect import text_detect
elif yoloTextFlag=='keras':
scale,maxScale = IMGSIZE[0],2048
from text.keras_detect import text_detect
else:
print( "err,text engine in keras\opencv\darknet")
from text.opencv_dnn_detect import angle_detect
if ocr_redis:
##多任务并发识别
from apphelper.redisbase import redisDataBase
ocr = redisDataBase().put_values
else:
from crnn.keys import alphabetChinese,alphabetEnglish
if ocrFlag=='keras':
from crnn.network_keras import CRNN
if chineseModel:
alphabet = alphabetChinese
if LSTMFLAG:
ocrModel = ocrModelKerasLstm
else:
ocrModel = ocrModelKerasDense
else:
ocrModel = ocrModelKerasEng
alphabet = alphabetEnglish
LSTMFLAG = True
elif ocrFlag=='torch':
from crnn.network_torch import CRNN
if chineseModel:
alphabet = alphabetChinese
if LSTMFLAG:
ocrModel = ocrModelTorchLstm
else:
ocrModel = ocrModelTorchDense
else:
ocrModel = ocrModelTorchEng
alphabet = alphabetEnglish
LSTMFLAG = True
elif ocrFlag=='opencv':
from crnn.network_dnn import CRNN
ocrModel = ocrModelOpencv
alphabet = alphabetChinese
else:
print( "err,ocr engine in keras\opencv\darknet")
nclass = len(alphabet)+1
if ocrFlag=='opencv':
crnn = CRNN(alphabet=alphabet)
else:
crnn = CRNN( 32, 1, nclass, 256, leakyRelu=False,lstmFlag=LSTMFLAG,GPU=GPU,alphabet=alphabet)
if os.path.exists(ocrModel):
crnn.load_weights(ocrModel)
else:
print("download model or tranform model with tools!")
ocr = crnn.predict_job
from main import TextOcrModel
model = TextOcrModel(ocr,text_detect,angle_detect)
billList = ['通用OCR','火车票','身份证']
class OCR:
"""通用OCR识别"""
def GET(self):
post = {}
post['postName'] = 'ocr'##请求地址
post['height'] = 1000
post['H'] = 1000
post['width'] = 600
post['W'] = 600
post['billList'] = billList
return render.ocr(post)
def POST(self):
t = time.time()
data = web.data()
uidJob = uuid.uuid1().__str__()
data = json.loads(data)
billModel = data.get('billModel','')
textAngle = data.get('textAngle',False)##文字检测
textLine = data.get('textLine',False)##只进行单行识别
imgString = data['imgString'].encode().split(b';base64,')[-1]
img = base64_to_PIL(imgString)
if img is not None:
img = np.array(img)
H,W = img.shape[:2]
while time.time()-t<=TIMEOUT:
if os.path.exists(filelock):
continue
else:
with open(filelock,'w') as f:
f.write(uidJob)
if textLine:
##单行识别
partImg = Image.fromarray(img)
text = crnn.predict(partImg.convert('L'))
res =[ {'text':text,'name':'0','box':[0,0,W,0,W,H,0,H]} ]
os.remove(filelock)
break
else:
detectAngle = textAngle
result,angle= model.model(img,
scale=scale,
maxScale=maxScale,
detectAngle=detectAngle,##是否进行文字方向检测,通过web传参控制
MAX_HORIZONTAL_GAP=100,##字符之间的最大间隔,用于文本行的合并
MIN_V_OVERLAPS=0.6,
MIN_SIZE_SIM=0.6,
TEXT_PROPOSALS_MIN_SCORE=0.1,
TEXT_PROPOSALS_NMS_THRESH=0.3,
TEXT_LINE_NMS_THRESH = 0.99,##文本行之间测iou值
LINE_MIN_SCORE=0.1,
leftAdjustAlph=0.01,##对检测的文本行进行向左延伸
rightAdjustAlph=0.01,##对检测的文本行进行向右延伸
)
if billModel=='' or billModel=='通用OCR' :
result = union_rbox(result,0.2)
res = [{'text':x['text'],
'name':str(i),
'box':{'cx':x['cx'],
'cy':x['cy'],
'w':x['w'],
'h':x['h'],
'angle':x['degree']
}
} for i,x in enumerate(result)]
res = adjust_box_to_origin(img,angle, res)##修正box
elif billModel=='火车票':
res = trainTicket.trainTicket(result)
res = res.res
res =[ {'text':res[key],'name':key,'box':{}} for key in res]
elif billModel=='身份证':
res = idcard.idcard(result)
res = res.res
res =[ {'text':res[key],'name':key,'box':{}} for key in res]
os.remove(filelock)
break
timeTake = time.time()-t
return json.dumps({'res':res,'timeTake':round(timeTake,4)},ensure_ascii=False)
urls = ('/ocr','OCR',)
if __name__ == "__main__":
app = web.application(urls, globals())
app.run()