-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmms_dataloader.py
744 lines (617 loc) · 32.2 KB
/
mms_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
from PIL import Image
import torchfile
from torch.utils.data import DataLoader, TensorDataset, random_split, ConcatDataset
from torchvision import transforms
from torchvision.transforms import InterpolationMode
import torchvision.transforms.functional as F
import torch
import torch.nn as nn
import os
import sys
import torchvision.utils as vutils
import numpy as np
import torch.nn.init as init
import torch.utils.data as data
import random
import xlrd
import math
from skimage.exposure import match_histograms
import matplotlib.pyplot as plt
from utils.utils import im_convert
from utils.data_utils import colorful_spectrum_mix, fourier_transform, save_image
from config import default_config
# torch.cuda.set_device(6)
# Data directories
LabeledVendorA_data_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D/data/Labeled/vendorA/'
LabeledVendorA_mask_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D/mask/Labeled/vendorA/'
ReA_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D_re/Labeled/vendorA/'
LabeledVendorB2_data_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D/data/Labeled/vendorB/center2/'
LabeledVendorB2_mask_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D/mask/Labeled/vendorB/center2/'
ReB2_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D_re/Labeled/vendorB/center2/'
LabeledVendorB3_data_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D/data/Labeled/vendorB/center3/'
LabeledVendorB3_mask_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D/mask/Labeled/vendorB/center3/'
ReB3_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D_re/Labeled/vendorB/center3/'
LabeledVendorC_data_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D/data/Labeled/vendorC/'
LabeledVendorC_mask_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D/mask/Labeled/vendorC/'
ReC_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D_re/Labeled/vendorC/'
LabeledVendorD_data_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D/data/Labeled/vendorD/'
LabeledVendorD_mask_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D/mask/Labeled/vendorD/'
ReD_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D_re/Labeled/vendorD/'
UnlabeledVendorC_data_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D/data/Unlabeled/vendorC/'
UnReC_dir = '/home/hyaoad/remote/semi_medical/mnms_split_2D_re/Unlabeled/vendorC/'
Re_dir = [ReA_dir, ReB2_dir, ReB3_dir, ReC_dir, ReD_dir]
Labeled_data_dir = [LabeledVendorA_data_dir, LabeledVendorB2_data_dir, LabeledVendorB3_data_dir, LabeledVendorC_data_dir, LabeledVendorD_data_dir]
Labeled_mask_dir = [LabeledVendorA_mask_dir, LabeledVendorB2_mask_dir, LabeledVendorB3_mask_dir, LabeledVendorC_mask_dir, LabeledVendorD_mask_dir]
def get_meta_split_data_loaders(test_vendor='D', image_size=224, batch_size=1):
random.seed(14)
domain_1_labeled_dataset, domain_2_labeled_dataset, domain_3_labeled_dataset, \
domain_1_unlabeled_dataset, domain_2_unlabeled_dataset, domain_3_unlabeled_dataset, \
test_dataset = \
get_data_loader_folder(Labeled_data_dir, Labeled_mask_dir, batch_size, image_size, test_num=test_vendor)
return domain_1_labeled_dataset, domain_2_labeled_dataset, domain_3_labeled_dataset, \
domain_1_unlabeled_dataset, domain_2_unlabeled_dataset, domain_3_unlabeled_dataset, \
test_dataset
def get_data_loader_folder(data_folders, mask_folders, batch_size, new_size=288, test_num='D', num_workers=0):
if test_num=='A':
domain_1_img_dirs = [data_folders[1], data_folders[2]]
domain_1_mask_dirs = [mask_folders[1], mask_folders[2]]
domain_2_img_dirs = [data_folders[3]]
domain_2_mask_dirs = [mask_folders[3]]
domain_3_img_dirs = [data_folders[4]]
domain_3_mask_dirs = [mask_folders[4]]
fourier_dirs = [data_folders[1], data_folders[2], data_folders[3], data_folders[4]]
fourier_masks = [mask_folders[1], mask_folders[2], mask_folders[3], mask_folders[4]]
test_data_dirs = [data_folders[0]]
test_mask_dirs = [mask_folders[0]]
domain_1_re = [Re_dir[1], Re_dir[2]]
domain_2_re = [Re_dir[3]]
domain_3_re = [Re_dir[4]]
test_re = [Re_dir[0]]
domain_1_num = [74, 51]
domain_2_num = [50]
domain_3_num = [50]
test_num = [95]
elif test_num=='B':
domain_1_img_dirs = [data_folders[0]]
domain_1_mask_dirs = [mask_folders[0]]
domain_2_img_dirs = [data_folders[3]]
domain_2_mask_dirs = [mask_folders[3]]
domain_3_img_dirs = [data_folders[4]]
domain_3_mask_dirs = [mask_folders[4]]
fourier_dirs = [data_folders[0], data_folders[3], data_folders[4]]
fourier_masks = [mask_folders[0], mask_folders[3], mask_folders[4]]
test_data_dirs = [data_folders[1], data_folders[2]]
test_mask_dirs = [mask_folders[1], mask_folders[2]]
domain_1_re = [Re_dir[0]]
domain_2_re = [Re_dir[3]]
domain_3_re = [Re_dir[4]]
test_re = [Re_dir[1], Re_dir[2]]
domain_1_num = [95]
domain_2_num = [50]
domain_3_num = [50]
test_num = [74, 51]
elif test_num=='C':
domain_1_img_dirs = [data_folders[0]]
domain_1_mask_dirs = [mask_folders[0]]
domain_2_img_dirs = [data_folders[1], data_folders[2]]
domain_2_mask_dirs = [mask_folders[1], mask_folders[2]]
domain_3_img_dirs = [data_folders[4]]
domain_3_mask_dirs = [mask_folders[4]]
fourier_dirs = [data_folders[1], data_folders[2], data_folders[0], data_folders[4]]
fourier_masks = [mask_folders[1], mask_folders[2], mask_folders[0], mask_folders[4]]
test_data_dirs = [data_folders[3]]
test_mask_dirs = [mask_folders[3]]
domain_1_re = [Re_dir[0]]
domain_2_re = [Re_dir[1], Re_dir[2]]
domain_3_re = [Re_dir[4]]
test_re = [Re_dir[3]]
domain_1_num = [95]
domain_2_num = [74, 51]
domain_3_num = [50]
test_num = [50]
elif test_num=='D':
domain_1_img_dirs = [data_folders[0]]
domain_1_mask_dirs = [mask_folders[0]]
domain_2_img_dirs = [data_folders[1], data_folders[2]]
domain_2_mask_dirs = [mask_folders[1], mask_folders[2]]
domain_3_img_dirs = [data_folders[3]]
domain_3_mask_dirs = [mask_folders[3]]
fourier_dirs = [data_folders[0], data_folders[1], data_folders[2], data_folders[3]]
fourier_masks = [mask_folders[0], mask_folders[1], mask_folders[2], mask_folders[3]]
test_data_dirs = [data_folders[4]]
test_mask_dirs = [mask_folders[4]]
domain_1_re = [Re_dir[0]]
domain_2_re = [Re_dir[1], Re_dir[2]]
domain_3_re = [Re_dir[3]]
test_re = [Re_dir[4]]
domain_1_num = [95]
domain_2_num = [74, 51]
domain_3_num = [50]
test_num = [50]
else:
print('Wrong test vendor!')
print("loading labeled dateset")
domain_1_labeled_dataset = ImageFolder(domain_1_img_dirs, domain_1_mask_dirs, domain_1_img_dirs, domain_1_re, fourier_dir=fourier_dirs, fourier_mask=fourier_masks, label=0, num_label=domain_1_num, train=True, labeled=True)
domain_2_labeled_dataset = ImageFolder(domain_2_img_dirs, domain_2_mask_dirs, domain_1_img_dirs, domain_2_re, fourier_dir=fourier_dirs, fourier_mask=fourier_masks, label=1, num_label=domain_2_num, train=True, labeled=True)
domain_3_labeled_dataset = ImageFolder(domain_3_img_dirs, domain_3_mask_dirs, domain_1_img_dirs, domain_3_re, fourier_dir=fourier_dirs, fourier_mask=fourier_masks, label=2, num_label=domain_3_num, train=True, labeled=True)
# domain_1_labeled_loader = DataLoader(dataset=domain_1_labeled_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=num_workers, pin_memory=True)
# domain_2_labeled_loader = DataLoader(dataset=domain_2_labeled_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=num_workers, pin_memory=True)
# domain_3_labeled_loader = DataLoader(dataset=domain_3_labeled_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=num_workers, pin_memory=True)
print("loading unlabeled dateset")
domain_1_unlabeled_dataset = ImageFolder(domain_1_img_dirs, domain_1_mask_dirs, domain_1_img_dirs, domain_1_re, fourier_dir=fourier_dirs, fourier_mask=fourier_masks, label=0, train=True, labeled=False)
domain_2_unlabeled_dataset = ImageFolder(domain_2_img_dirs, domain_2_mask_dirs, domain_1_img_dirs, domain_2_re, fourier_dir=fourier_dirs, fourier_mask=fourier_masks, label=1, train=True, labeled=False)
domain_3_unlabeled_dataset = ImageFolder(domain_3_img_dirs, domain_3_mask_dirs, domain_1_img_dirs, domain_3_re, fourier_dir=fourier_dirs, fourier_mask=fourier_masks, label=2, train=True, labeled=False)
# domain_1_unlabeled_loader = DataLoader(dataset=domain_1_unlabeled_dataset, batch_size=batch_size, shuffle=False, drop_last=True, num_workers=num_workers, pin_memory=True)
# domain_2_unlabeled_loader = DataLoader(dataset=domain_2_unlabeled_dataset, batch_size=batch_size, shuffle=False, drop_last=True, num_workers=num_workers, pin_memory=True)
# domain_3_unlabeled_loader = DataLoader(dataset=domain_3_unlabeled_dataset, batch_size=batch_size, shuffle=False, drop_last=True, num_workers=num_workers, pin_memory=True)
print("loading test dateset")
test_dataset = ImageFolder(test_data_dirs, test_mask_dirs, domain_1_img_dirs, test_re, train=False, labeled=True)
# test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False, drop_last=True, num_workers=num_workers, pin_memory=True)
return domain_1_labeled_dataset, domain_2_labeled_dataset, domain_3_labeled_dataset, \
domain_1_unlabeled_dataset, domain_2_unlabeled_dataset, domain_3_unlabeled_dataset, \
test_dataset
def default_loader(path):
return np.load(path)['arr_0']
def make_dataset(dir):
images = []
assert os.path.isdir(dir), '%s is not a valid directory' % dir
for root, _, fnames in sorted(os.walk(dir)):
for fname in fnames:
path = os.path.join(root, fname)
images.append(path)
return images
def fourier_augmentation(img, tar_img, mode, alpha):
# transfer image from PIL to numpy
img = np.array(img)
tar_img = np.array(tar_img)
img = img[:,:,np.newaxis]
tar_img = tar_img[:,:,np.newaxis]
# the mode comes from the paper "A Fourier-based Framework for Domain Generalization"
if mode == 'AS':
# print("using AS mode")
aug_img, aug_tar_img = fourier_transform(img, tar_img, L=0.01, i=1)
elif mode == 'AM':
# print("using AM mode")
aug_img, aug_tar_img = colorful_spectrum_mix(img, tar_img, alpha=alpha)
else:
print("mode name error")
aug_img = np.squeeze(aug_img)
aug_img = Image.fromarray(aug_img)
aug_tar_img = np.squeeze(aug_tar_img)
aug_tar_img = Image.fromarray(aug_tar_img)
return aug_img, aug_tar_img
class ImageFolder(data.Dataset):
def __init__(self, data_dirs, mask_dirs, ref_dir, re, fourier_dir=None, fourier_mask=None, train=True, label=None, num_label=None, labeled=True, loader=default_loader):
print("data_dirs", data_dirs)
print("mask_dirs", mask_dirs)
reso_dir = re
temp_imgs = []
temp_masks = []
temp_re = []
domain_labels = []
tem_ref_imgs = []
fourier_imgs = []
labeled_fourier_imgs = []
if train:
#100%
# k = 1
# 50%
# k = 0.5
# 5%
k = default_config['ratio']
print("The ratio is ", k)
#2%
# k = 0.02
else:
k = 1
for num_set in range(len(data_dirs)):
re_roots = sorted(make_dataset(reso_dir[num_set]))
data_roots = sorted(make_dataset(data_dirs[num_set]))
mask_roots = sorted(make_dataset(mask_dirs[num_set]))
num_label_data = 0
ratio = 1
for num_data in range(len(data_roots)):
if labeled:
if train:
n_label = str(math.ceil(num_label[num_set] * k + 1))
if '00'+n_label==data_roots[num_data][-10:-7] or '0'+n_label==data_roots[num_data][-10:-7]:
# print("n_label",n_label)
# print(data_roots[num_data][-10:-7])
break
for num_mask in range(len(mask_roots)):
if data_roots[num_data][-10:-4] == mask_roots[num_mask][-10:-4]:
temp_re.append(re_roots[num_data])
temp_imgs.append(data_roots[num_data])
temp_masks.append(mask_roots[num_mask])
domain_labels.append(label)
num_label_data += 1
else:
pass
else:
if default_config['ifFast']:
if ratio % 10 == 0:
temp_re.append(re_roots[num_data])
temp_imgs.append(data_roots[num_data])
domain_labels.append(label)
ratio += 1
else:
ratio += 1
else:
temp_re.append(re_roots[num_data])
temp_imgs.append(data_roots[num_data])
domain_labels.append(label)
for num_set in range(len(ref_dir)):
data_roots = sorted(make_dataset(ref_dir[num_set]))
for num_data in range(len(data_roots)):
tem_ref_imgs.append(data_roots[num_data])
# for Fourier dirs
if train == True :
for num_set in range(len(fourier_dir)):
data_roots = sorted(make_dataset(fourier_dir[num_set]))
for num_data in range(len(data_roots)):
fourier_imgs.append(data_roots[num_data])
# for labeled Fourier dirs
# for num_set in range(len(fourier_dir)):
# data_roots = sorted(make_dataset(fourier_dir[num_set]))
# mask_roots = sorted(make_dataset(fourier_mask[num_set]))
# for num_data in range(len(data_roots)):
# for num_mask in range(len(mask_roots)):
# if data_roots[num_data][-10:-4] == mask_roots[num_mask][-10:-4]:
# labeled_fourier_imgs.append(data_roots[num_data])
reso = temp_re
imgs = temp_imgs
masks = temp_masks
labels = domain_labels
print("length of imgs",len(imgs))
print("length of masks",len(masks))
# print("length of fourier imgs",len(fourier_imgs))
# print("length of labeled fourier imgs",len(labeled_fourier_imgs))
ref_imgs = tem_ref_imgs
# add something here to index, such that can split the data
# index = random.sample(range(len(temp_img)), len(temp_mask))
self.reso = reso
self.imgs = imgs
self.masks = masks
self.labels = labels
self.new_size = 288
self.loader = loader
self.labeled = labeled
self.train = train
self.ref = ref_imgs
self.Fourier_aug = default_config['Fourier_aug']
self.fourier = fourier_imgs
self.fourier_mode = default_config['fourier_mode']
self.alpha = 0.3
self.aug_p = 0.1
def __getitem__(self, index):
if self.train:
index = random.randrange(len(self.imgs))
else:
pass
path_re = self.reso[index]
re = self.loader(path_re)
re = re[0]
path_img = self.imgs[index]
img = self.loader(path_img) # numpy, HxW, numpy.Float64
ref_paths = random.sample(self.ref, 1)
ref_img = self.loader(ref_paths[0])
img = match_histograms(img, ref_img)
label = self.labels[index]
if label==0:
one_hot_label = torch.tensor([[1], [0], [0]])
elif label==1:
one_hot_label = torch.tensor([[0], [1], [0]])
elif label==2:
one_hot_label = torch.tensor([[0], [0], [1]])
else:
one_hot_label = torch.tensor([[0], [0], [0]])
# Intensity cropping:
p5 = np.percentile(img.flatten(), 0.5)
p95 = np.percentile(img.flatten(), 99.5)
img = np.clip(img, p5, p95)
img -= img.min()
img /= img.max()
img = img.astype('float32')
# for Fourier augmentation
if self.Fourier_aug == True and self.train == True:
fourier_paths = random.sample(self.fourier, 1)
fourier_img = self.loader(fourier_paths[0])
fourier_p5 = np.percentile(fourier_img.flatten(), 0.5)
fourier_p95 = np.percentile(fourier_img.flatten(), 99.5)
fourier_img = np.clip(fourier_img, fourier_p5, fourier_p95)
fourier_img -= fourier_img.min()
fourier_img /= fourier_img.max()
fourier_img = fourier_img.astype('float32')
crop_size = 300
# Augmentations:
# 1. random rotation
# 2. random scaling 0.8 - 1.2
# 3. random crop from 280x280
# 4. random hflip
# 5. random vflip
# 6. color jitter
# 7. Gaussian filtering
img_tensor = F.to_tensor(np.array(img))
img_size = img_tensor.size()
# labeled
if self.labeled:
if self.train:
img = Image.fromarray(img)
# rotate, random angle between 0 - 90
angle = random.randint(0, 90)
img = F.rotate(img, angle, InterpolationMode.BILINEAR)
path_mask = self.masks[index]
mask = Image.open(path_mask) # numpy, HxWx3
# rotate, random angle between 0 - 90
mask = F.rotate(mask, angle, InterpolationMode.NEAREST)
## Find the region of mask
norm_mask = F.to_tensor(np.array(mask))
region = norm_mask[0] + norm_mask[1] + norm_mask[2]
non_zero_index = torch.nonzero(region == 1, as_tuple=False)
if region.sum() > 0:
len_m = len(non_zero_index[0])
x_region = non_zero_index[len_m//2][0]
y_region = non_zero_index[len_m//2][1]
x_region = int(x_region.item())
y_region = int(y_region.item())
else:
x_region = norm_mask.size(-2) // 2
y_region = norm_mask.size(-1) // 2
# resize and center-crop to 280x280
resize_order = re / 1.1
resize_size_h = int(img_size[-2] * resize_order)
resize_size_w = int(img_size[-1] * resize_order)
left_size = 0
top_size = 0
right_size = 0
bot_size = 0
if resize_size_h < self.new_size:
top_size = (self.new_size - resize_size_h) // 2
bot_size = (self.new_size - resize_size_h) - top_size
if resize_size_w < self.new_size:
left_size = (self.new_size - resize_size_w) // 2
right_size = (self.new_size - resize_size_w) - left_size
transform_list = [transforms.Pad((left_size, top_size, right_size, bot_size))]
transform_list = [transforms.Resize((resize_size_h, resize_size_w))] + transform_list
transform = transforms.Compose(transform_list)
img = transform(img)
if self.Fourier_aug:
# aug_p = random.random()
# if aug_p > self.aug_p:
fourier_img = Image.fromarray(fourier_img)
fourier_img = F.rotate(fourier_img, angle, InterpolationMode.BILINEAR)
fourier_img = transform(fourier_img)
aug_img, _ = fourier_augmentation(img, fourier_img, self.fourier_mode, self.alpha)
else:
fourier_img = torch.tensor([0])
aug_tar_img = torch.tensor([0])
aug_img = torch.tensor([0])
## Define the crop index
if top_size >= 0:
top_crop = 0
else:
if x_region > self.new_size//2:
if x_region - self.new_size//2 + self.new_size <= norm_mask.size(-2):
top_crop = x_region - self.new_size//2
else:
top_crop = norm_mask.size(-2) - self.new_size
else:
top_crop = 0
if left_size >= 0:
left_crop = 0
else:
if y_region > self.new_size//2:
if y_region - self.new_size//2 + self.new_size <= norm_mask.size(-1):
left_crop = y_region - self.new_size//2
else:
left_crop = norm_mask.size(-1) - self.new_size
else:
left_crop = 0
# random crop to 224x224
img = F.crop(img, top_crop, left_crop, self.new_size, self.new_size)
# random flip
hflip_p = random.random()
img = F.hflip(img) if hflip_p >= 0.5 else img
vflip_p = random.random()
img = F.vflip(img) if vflip_p >= 0.5 else img
img = F.to_tensor(np.array(img))
# Gaussian bluring:
transform_list = [transforms.GaussianBlur(5, sigma=(0.25, 1.25))]
transform = transforms.Compose(transform_list)
img = transform(img)
if self.Fourier_aug:
aug_img = F.crop(aug_img, top_crop, left_crop, self.new_size, self.new_size)
aug_img = F.hflip(aug_img) if hflip_p >= 0.5 else aug_img
aug_img = F.vflip(aug_img) if vflip_p >= 0.5 else aug_img
aug_img = F.to_tensor(np.array(aug_img))
aug_img = transform(aug_img)
# resize and center-crop to 280x280
transform_mask_list = [transforms.Pad(
(left_size, top_size, right_size, bot_size))]
transform_mask_list = [transforms.Resize((resize_size_h, resize_size_w),
interpolation=InterpolationMode.NEAREST)] + transform_mask_list
transform_mask = transforms.Compose(transform_mask_list)
mask = transform_mask(mask) # C,H,W
# random crop to 224x224
mask = F.crop(mask, top_crop, left_crop, self.new_size, self.new_size)
# random flip
mask = F.hflip(mask) if hflip_p >= 0.5 else mask
mask = F.vflip(mask) if vflip_p >= 0.5 else mask
mask = F.to_tensor(np.array(mask))
mask_bg = (mask.sum(0) == 0).type_as(mask) # H,W
mask_bg = mask_bg.reshape((1, mask_bg.size(0), mask_bg.size(1)))
mask = torch.cat((mask, mask_bg), dim=0)
else:
path_mask = self.masks[index]
mask = Image.open(path_mask) # numpy, HxWx3
# resize and center-crop to 280x280
## Find the region of mask
norm_mask = F.to_tensor(np.array(mask))
region = norm_mask[0] + norm_mask[1] + norm_mask[2]
non_zero_index = torch.nonzero(region == 1, as_tuple=False)
if region.sum() > 0:
len_m = len(non_zero_index[0])
x_region = non_zero_index[len_m//2][0]
y_region = non_zero_index[len_m//2][1]
x_region = int(x_region.item())
y_region = int(y_region.item())
else:
x_region = norm_mask.size(-2) // 2
y_region = norm_mask.size(-1) // 2
resize_order = re / 1.1
resize_size_h = int(img_size[-2] * resize_order)
resize_size_w = int(img_size[-1] * resize_order)
left_size = 0
top_size = 0
right_size = 0
bot_size = 0
if resize_size_h < self.new_size:
top_size = (self.new_size - resize_size_h) // 2
bot_size = (self.new_size - resize_size_h) - top_size
if resize_size_w < self.new_size:
left_size = (self.new_size - resize_size_w) // 2
right_size = (self.new_size - resize_size_w) - left_size
# transform_list = [transforms.CenterCrop((crop_size, crop_size))]
transform_list = [transforms.Pad((left_size, top_size, right_size, bot_size))]
transform_list = [transforms.Resize((resize_size_h, resize_size_w))] + transform_list
transform_list = [transforms.ToPILImage()] + transform_list
transform = transforms.Compose(transform_list)
img = transform(img)
img = F.to_tensor(np.array(img))
## Define the crop index
if top_size >= 0:
top_crop = 0
else:
if x_region > self.new_size//2:
if x_region - self.new_size//2 + self.new_size <= norm_mask.size(-2):
top_crop = x_region - self.new_size//2
else:
top_crop = norm_mask.size(-2) - self.new_size
else:
top_crop = 0
if left_size >= 0:
left_crop = 0
else:
if y_region > self.new_size//2:
if y_region - self.new_size//2 + self.new_size <= norm_mask.size(-1):
left_crop = y_region - self.new_size//2
else:
left_crop = norm_mask.size(-1) - self.new_size
else:
left_crop = 0
# random crop to 224x224
img = F.crop(img, top_crop, left_crop, self.new_size, self.new_size)
# resize and center-crop to 280x280
# transform_mask_list = [transforms.CenterCrop((crop_size, crop_size))]
transform_mask_list = [transforms.Pad(
(left_size, top_size, right_size, bot_size))]
transform_mask_list = [transforms.Resize((resize_size_h, resize_size_w),
interpolation=InterpolationMode.NEAREST)] + transform_mask_list
transform_mask = transforms.Compose(transform_mask_list)
mask = transform_mask(mask) # C,H,W
mask = F.crop(mask, top_crop, left_crop, self.new_size, self.new_size)
mask = F.to_tensor(np.array(mask))
mask_bg = (mask.sum(0) == 0).type_as(mask) # H,W
mask_bg = mask_bg.reshape((1, mask_bg.size(0), mask_bg.size(1)))
mask = torch.cat((mask, mask_bg), dim=0)
fourier_img = torch.tensor([0])
aug_img = torch.tensor([0])
aug_tar_img = torch.tensor([0])
# mask_0 = mask[0,:,:]
# mask_1 = mask[1,:,:]
# mask_2 = mask[2,:,:]
# mask_3 = mask[3,:,:]
# mask = mask_0*1 + mask_1*2 + mask_2*3 + mask_3*0
# unlabel
else:
mask = torch.tensor([0])
img = Image.fromarray(img)
# rotate, random angle between 0 - 90
angle = random.randint(0, 90)
img = F.rotate(img, angle, InterpolationMode.BILINEAR)
# resize and center-crop to 280x280
resize_order = re / 1.1
resize_size_h = int(img_size[-2] * resize_order)
resize_size_w = int(img_size[-1] * resize_order)
left_size = 0
top_size = 0
right_size = 0
bot_size = 0
if resize_size_h < crop_size:
top_size = (crop_size - resize_size_h) // 2
bot_size = (crop_size - resize_size_h) - top_size
if resize_size_w < crop_size:
left_size = (crop_size - resize_size_w) // 2
right_size = (crop_size - resize_size_w) - left_size
transform_list = [transforms.CenterCrop((crop_size, crop_size))]
transform_list = [transforms.Pad((left_size, top_size, right_size, bot_size))] + transform_list
transform_list = [transforms.Resize((resize_size_h, resize_size_w))] + transform_list
transform = transforms.Compose(transform_list)
img = transform(img)
if self.Fourier_aug:
# aug_p = random.random()
# if aug_p > self.aug_p:
fourier_img = Image.fromarray(fourier_img)
fourier_img = F.rotate(fourier_img, angle, InterpolationMode.BILINEAR)
fourier_img = transform(fourier_img)
aug_img, aug_tar_img = fourier_augmentation(img, fourier_img, self.fourier_mode, self.alpha)
else:
aug_img = torch.tensor([0])
aug_tar_img = torch.tensor([0])
fourier_img = torch.tensor([0])
# random crop to 224x224
top_crop = random.randint(0, crop_size - self.new_size)
left_crop = random.randint(0, crop_size - self.new_size)
img = F.crop(img, top_crop, left_crop, self.new_size, self.new_size)
# random flip
hflip_p = random.random()
vflip_p = random.random()
img = F.hflip(img) if hflip_p >= 0.5 else img
img = F.vflip(img) if vflip_p >= 0.5 else img
img = F.to_tensor(np.array(img))
# Gaussian bluring:
transform_list = [transforms.GaussianBlur(5, sigma=(0.25, 1.25))]
transform = transforms.Compose(transform_list)
img = transform(img)
if self.Fourier_aug:
aug_img = F.crop(aug_img, top_crop, left_crop, self.new_size, self.new_size)
aug_img = F.hflip(aug_img) if hflip_p >= 0.5 else aug_img
aug_img = F.vflip(aug_img) if vflip_p >= 0.5 else aug_img
aug_img = F.to_tensor(np.array(aug_img))
aug_img = transform(aug_img)
ouput_dict = dict(
img = img,
aug_img = aug_img,
mask = mask,
path_img = path_img,
domain_label = one_hot_label.squeeze()
)
return ouput_dict # pytorch: N,C,H,W
def __len__(self):
return len(self.imgs)
if __name__ == '__main__':
test_vendor = 'A'
domain_1_labeled_dataset, domain_2_labeled_dataset, domain_3_labeled_dataset, \
domain_1_unlabeled_dataset, domain_2_unlabeled_dataset, domain_3_unlabeled_dataset, \
test_dataset = get_meta_split_data_loaders(test_vendor=test_vendor, image_size=224)
label_dataset = ConcatDataset([domain_1_labeled_dataset, domain_2_labeled_dataset, domain_3_labeled_dataset])
label_loader = DataLoader(dataset=label_dataset, batch_size=1, shuffle=False, drop_last=True, pin_memory=True)
unlabel_dataset = ConcatDataset([domain_1_unlabeled_dataset, domain_2_unlabeled_dataset, domain_3_unlabeled_dataset])
unlabel_loader = DataLoader(dataset=unlabel_dataset, batch_size=1, shuffle=False, drop_last=True, pin_memory=True)
# test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False, drop_last=True, pin_memory=True)
dataiter = iter(unlabel_loader)
output = dataiter.next()
img = output['img']
aug_img = output['aug_img']
mask = output['mask']
# domain_label = output['domain_label']
print("img shape",img.shape)
print("aug_img shape",aug_img.shape)
print("mask shape",mask.shape)
# mask = mask[:, 0:3, :, :]
# img = im_convert(img, False)
# aug_img = im_convert(aug_img, False)
# save_image(img, './fpic/label_'+str(default_config['fourier_mode'])+'_img.png')
# save_image(aug_img, './fpic/label_'+str(default_config['fourier_mode'])+'_aug_img.png')
# mask = im_convert(mask, True)
# save_image(mask, './fpic/label_'+str(default_config['fourier_mode'])+'_mask.png')