-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmms_train.py
473 lines (381 loc) · 18.6 KB
/
mms_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import os
import sys
import math
import wandb
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, ConcatDataset
from torchvision import transforms
import torch.distributed as dist
import torchvision.models as models
from network.network import my_net
from utils.utils import get_device, check_accuracy, check_accuracy_dual, label_to_onehot
from mms_dataloader import get_meta_split_data_loaders
from config import default_config
from utils.dice_loss import dice_coeff
# from losses import SupConLoss
import utils.mask_gen as mask_gen
from utils.custom_collate import SegCollate
gpus = default_config['gpus']
torch.cuda.set_device('cuda:{}'.format(gpus[0]))
wandb.init(project='MNMS_seg', entity='nekokiku',
config=default_config, name=default_config['train_name'])
config = wandb.config
device = get_device()
def pre_data(batch_size, num_workers, test_vendor):
test_vendor = test_vendor
domain_1_labeled_dataset, domain_2_labeled_dataset, domain_3_labeled_dataset, \
domain_1_unlabeled_dataset, domain_2_unlabeled_dataset, domain_3_unlabeled_dataset, \
test_dataset = get_meta_split_data_loaders(
test_vendor=test_vendor, image_size=224)
val_dataset = ConcatDataset(
[domain_1_labeled_dataset, domain_2_labeled_dataset, domain_3_labeled_dataset])
label_dataset = ConcatDataset(
[domain_1_labeled_dataset, domain_2_labeled_dataset, domain_3_labeled_dataset])
unlabel_dataset = ConcatDataset(
[domain_1_unlabeled_dataset, domain_2_unlabeled_dataset, domain_3_unlabeled_dataset])
# unlabel_dataset = domain_2_unlabeled_dataset
print("before length of label_dataset", len(label_dataset))
new_labeldata_num = len(unlabel_dataset) // len(label_dataset) + 1
new_label_dataset = label_dataset
for i in range(new_labeldata_num):
new_label_dataset = ConcatDataset([new_label_dataset, label_dataset])
label_dataset = new_label_dataset
# For CutMix
mask_generator = mask_gen.BoxMaskGenerator(prop_range=config['cutmix_mask_prop_range'], n_boxes=config['cutmix_boxmask_n_boxes'],
random_aspect_ratio=config['cutmix_boxmask_fixed_aspect_ratio'],
prop_by_area=config['cutmix_boxmask_by_size'], within_bounds=config[
'cutmix_boxmask_outside_bounds'],
invert=config['cutmix_boxmask_no_invert'])
add_mask_params_to_batch = mask_gen.AddMaskParamsToBatch(
mask_generator
)
collate_fn = SegCollate()
mask_collate_fn = SegCollate(batch_aug_fn=add_mask_params_to_batch)
label_loader = DataLoader(dataset=label_dataset, batch_size=batch_size, num_workers=num_workers,
shuffle=True, drop_last=True, pin_memory=False, collate_fn=collate_fn)
unlabel_loader_0 = DataLoader(dataset=unlabel_dataset, batch_size=batch_size, num_workers=num_workers,
shuffle=True, drop_last=True, pin_memory=False, collate_fn=mask_collate_fn)
unlabel_loader_1 = DataLoader(dataset=unlabel_dataset, batch_size=batch_size, num_workers=num_workers,
shuffle=True, drop_last=True, pin_memory=False, collate_fn=collate_fn)
val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, num_workers=num_workers,
shuffle=False, drop_last=True, pin_memory=False, collate_fn=collate_fn)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, num_workers=num_workers,
shuffle=False, drop_last=True, pin_memory=False, collate_fn=collate_fn)
print("after length of label_dataset", len(label_dataset))
print("length of unlabel_dataset", len(unlabel_dataset))
print("length of val_dataset", len(val_dataset))
print("length of test_dataset", len(test_dataset))
return label_loader, unlabel_loader_0, unlabel_loader_1, test_loader, val_loader, len(label_dataset), len(unlabel_dataset)
# Dice loss
def dice_loss(pred, target):
"""
This definition generalize to real valued pred and target vector.
This should be differentiable.
pred: tensor with first dimension as batch
target: tensor with first dimension as batch
"""
smooth = 0.1 # 1e-12
# have to use contiguous since they may from a torch.view op
iflat = pred.contiguous().view(-1)
tflat = target.contiguous().view(-1)
intersection = (iflat * tflat).sum()
#A_sum = torch.sum(tflat * iflat)
#B_sum = torch.sum(tflat * tflat)
loss = ((2. * intersection + smooth) /
(iflat.sum() + tflat.sum() + smooth)).mean()
return 1 - loss
def total_dice_loss(pred, target):
dice_loss_lv = dice_loss(pred[:, 0, :, :], target[:, 0, :, :])
dice_loss_myo = dice_loss(pred[:, 1, :, :], target[:, 1, :, :])
dice_loss_rv = dice_loss(pred[:, 2, :, :], target[:, 2, :, :])
dice_loss_bg = dice_loss(pred[:, 3, :, :], target[:, 3, :, :])
loss = dice_loss_lv + dice_loss_myo + dice_loss_rv + dice_loss_bg
return loss
def ini_model(restore=False, restore_from=None):
if restore:
model_path_l = './tmodel/' + 'l_' + str(restore_from)
model_path_r = './tmodel/' + 'r_' + str(restore_from)
model_l = torch.load(model_path_l)
model_r = torch.load(model_path_r)
print("restore from ", model_path_l)
print("restore from ", model_path_r)
else:
# two models with different init
model_l = my_net(modelname='mydeeplabV3P')
model_r = my_net(modelname='mydeeplabV3P')
model_l = model_l.to(device)
model_l.device = device
model_r = model_r.to(device)
model_r.device = device
model_r = nn.DataParallel(model_r, device_ids=gpus, output_device=gpus[0])
model_l = nn.DataParallel(model_l, device_ids=gpus, output_device=gpus[0])
return model_l, model_r
def ini_optimizer(model_l, model_r, learning_rate, weight_decay):
# Initialize two optimizer.
optimizer_l = torch.optim.AdamW(
model_l.parameters(), lr=learning_rate, weight_decay=weight_decay)
optimizer_r = torch.optim.AdamW(
model_r.parameters(), lr=learning_rate, weight_decay=weight_decay)
return optimizer_l, optimizer_r
def cal_variance(pred, aug_pred):
kl_distance = nn.KLDivLoss(reduction='none')
sm = torch.nn.Softmax(dim=1)
log_sm = torch.nn.LogSoftmax(dim=1)
variance = torch.sum(kl_distance(
log_sm(pred), sm(aug_pred)), dim=1)
exp_variance = torch.exp(-variance)
return variance, exp_variance
def train_one_epoch(model_l, model_r, niters_per_epoch, label_dataloader, unlabel_dataloader_0, unlabel_dataloader_1, optimizer_r, optimizer_l, cross_criterion, epoch):
# loss data
total_loss = []
total_loss_l = []
total_loss_r = []
total_cps_loss = []
total_con_loss = []
# tqdm
bar_format = '{desc}[{elapsed}<{remaining},{rate_fmt}]'
pbar = tqdm(range(niters_per_epoch),
file=sys.stdout, bar_format=bar_format)
kl_distance = nn.KLDivLoss(reduction='none')
sm = torch.nn.Softmax(dim=1)
log_sm = torch.nn.LogSoftmax(dim=1)
for idx in pbar:
minibatch = label_dataloader.next()
unsup_minibatch_0 = unlabel_dataloader_0.next()
unsup_minibatch_1 = unlabel_dataloader_1.next()
imgs = minibatch['img']
aug_imgs = minibatch['aug_img']
mask = minibatch['mask']
unsup_imgs_0 = unsup_minibatch_0['img']
unsup_imgs_1 = unsup_minibatch_1['img']
aug_unsup_imgs_0 = unsup_minibatch_0['aug_img']
aug_unsup_imgs_1 = unsup_minibatch_1['aug_img']
mask_params = unsup_minibatch_0['mask_params']
imgs = imgs.to(device)
aug_imgs = aug_imgs.to(device)
mask_type = torch.long
mask = mask.to(device=device, dtype=mask_type)
unsup_imgs_0 = unsup_imgs_0.to(device)
unsup_imgs_1 = unsup_imgs_1.to(device)
aug_unsup_imgs_0 = aug_unsup_imgs_0.to(device)
aug_unsup_imgs_1 = aug_unsup_imgs_1.to(device)
mask_params = mask_params.to(device)
batch_mix_masks = mask_params
# unlabeled mixed images
unsup_imgs_mixed = unsup_imgs_0 * \
(1 - batch_mix_masks) + unsup_imgs_1 * batch_mix_masks
# unlabeled r mixed images
aug_unsup_imgs_mixed = aug_unsup_imgs_0 * \
(1 - batch_mix_masks) + aug_unsup_imgs_1 * batch_mix_masks
# add uncertainty
with torch.no_grad():
# Estimate the pseudo-label with model_l using original data
logits_u0_tea_1, _ = model_l(unsup_imgs_0)
logits_u1_tea_1, _ = model_l(unsup_imgs_1)
logits_u0_tea_1 = logits_u0_tea_1.detach()
logits_u1_tea_1 = logits_u1_tea_1.detach()
aug_logits_u0_tea_1, _ = model_l(aug_unsup_imgs_0)
aug_logits_u1_tea_1, _ = model_l(aug_unsup_imgs_1)
aug_logits_u0_tea_1 = aug_logits_u0_tea_1.detach()
aug_logits_u1_tea_1 = aug_logits_u1_tea_1.detach()
# Estimate the pseudo-label with model_r using augmentated data
logits_u0_tea_2, _ = model_r(unsup_imgs_0)
logits_u1_tea_2, _ = model_r(unsup_imgs_1)
logits_u0_tea_2 = logits_u0_tea_2.detach()
logits_u1_tea_2 = logits_u1_tea_2.detach()
aug_logits_u0_tea_2, _ = model_r(aug_unsup_imgs_0)
aug_logits_u1_tea_2, _ = model_r(aug_unsup_imgs_1)
aug_logits_u0_tea_2 = aug_logits_u0_tea_2.detach()
aug_logits_u1_tea_2 = aug_logits_u1_tea_2.detach()
logits_u0_tea_1 = (logits_u0_tea_1 + aug_logits_u0_tea_1) / 2
logits_u1_tea_1 = (logits_u1_tea_1 + aug_logits_u1_tea_1) / 2
logits_u0_tea_2 = (logits_u0_tea_2 + aug_logits_u0_tea_2) / 2
logits_u1_tea_2 = (logits_u1_tea_2 + aug_logits_u1_tea_2) / 2
# Mix teacher predictions using same mask
# It makes no difference whether we do this with logits or probabilities as
# the mask pixels are either 1 or 0
logits_cons_tea_1 = logits_u0_tea_1 * \
(1 - batch_mix_masks) + logits_u1_tea_1 * batch_mix_masks
_, ps_label_1 = torch.max(logits_cons_tea_1, dim=1)
ps_label_1 = ps_label_1.long()
logits_cons_tea_2 = logits_u0_tea_2 * \
(1 - batch_mix_masks) + logits_u1_tea_2 * batch_mix_masks
_, ps_label_2 = torch.max(logits_cons_tea_2, dim=1)
ps_label_2 = ps_label_2.long()
# Get student_l prediction for mixed image
logits_cons_stu_1, _ = model_l(unsup_imgs_mixed)
aug_logits_cons_stu_1,_ = model_l(aug_unsup_imgs_mixed)
# Get student_r prediction for mixed image
logits_cons_stu_2, _ = model_r(unsup_imgs_mixed)
aug_logits_cons_stu_2, _ = model_r(aug_unsup_imgs_mixed)
# add uncertainty
var_l, exp_var_l = cal_variance(logits_cons_stu_1, aug_logits_cons_stu_1)
var_r, exp_var_r = cal_variance(logits_cons_stu_2, aug_logits_cons_stu_2)
# cps loss
cps_loss = torch.mean(exp_var_r * cross_criterion(logits_cons_stu_1, ps_label_2)) + torch.mean(
exp_var_l * cross_criterion(logits_cons_stu_2, ps_label_1)) + torch.mean(var_l) + torch.mean(var_r)
# cps weight
cps_loss = cps_loss * config['CPS_weight']
# supervised loss on both models
pre_sup_l, feature_l = model_l(imgs)
pre_sup_r, feature_r = model_r(imgs)
# dice loss
sof_l = F.softmax(pre_sup_l, dim=1)
sof_r = F.softmax(pre_sup_r, dim=1)
loss_r = total_dice_loss(sof_r, mask)
loss_l = total_dice_loss(sof_l, mask)
# contrastive loss SupConLoss
# features means different views
# feature_l = feature_l.unsqueeze(1)
# feature_r = feature_r.unsqueeze(1)
# features = torch.cat((feature_l, feature_r),dim=1)
# supconloss = SupConLoss()
# con_loss = supconloss(features)
con_loss = 1
optimizer_l.zero_grad()
optimizer_r.zero_grad()
# if epoch <= 2:
# loss = loss_l + loss_r + con_loss
# else:
# loss = loss_l + loss_r + con_loss + cps_loss
loss = loss_l + loss_r + cps_loss
loss.backward()
optimizer_l.step()
optimizer_r.step()
total_loss.append(loss.item())
total_loss_l.append(loss_l.item())
total_loss_r.append(loss_r.item())
total_cps_loss.append(cps_loss.item())
total_con_loss.append(con_loss)
total_loss = sum(total_loss) / len(total_loss)
total_loss_l = sum(total_loss_l) / len(total_loss_l)
total_loss_r = sum(total_loss_r) / len(total_loss_r)
total_cps_loss = sum(total_cps_loss) / len(total_cps_loss)
total_con_loss = sum(total_con_loss) / len(total_con_loss)
return model_l, model_r, total_loss, total_loss_l, total_loss_r, total_cps_loss, total_con_loss
# use the function to calculate the valid loss or test loss
def test_dual(model_l, model_r, loader):
model_l.eval()
model_r.eval()
loss = []
t_loss = 0
r_loss = 0
dice_loss_lv = 0
dice_loss_myo = 0
dice_loss_rv = 0
dice_loss_bg = 0
tot = 0
tot_lv = 0
tot_myo = 0
tot_rv = 0
for batch in tqdm(loader):
imgs = batch['img']
mask = batch['mask']
imgs = imgs.to(device)
mask = mask.to(device)
with torch.no_grad():
logits_l,_ = model_l(imgs)
logits_r,_ = model_r(imgs)
sof_l = F.softmax(logits_l, dim=1)
sof_r = F.softmax(logits_r, dim=1)
pred = (sof_l + sof_r) / 2
pred = (pred > 0.5).float()
# loss
dice_loss_lv = dice_loss(pred[:, 0, :, :], mask[:, 0, :, :])
dice_loss_myo = dice_loss(pred[:, 1, :, :], mask[:, 1, :, :])
dice_loss_rv = dice_loss(pred[:, 2, :, :], mask[:, 2, :, :])
dice_loss_bg = dice_loss(pred[:, 3, :, :], mask[:, 3, :, :])
t_loss = dice_loss_lv + dice_loss_myo + dice_loss_rv + dice_loss_bg
loss.append(t_loss.item())
# dice score
tot += dice_coeff(pred[:, 0:3, :, :],
mask[:, 0:3, :, :], device).item()
tot_lv += dice_coeff(pred[:, 0, :, :], mask[:, 0, :, :], device).item()
tot_myo += dice_coeff(pred[:, 1, :, :],
mask[:, 1, :, :], device).item()
tot_rv += dice_coeff(pred[:, 2, :, :], mask[:, 2, :, :], device).item()
r_loss = sum(loss) / len(loss)
dice_lv = tot_lv/len(loader)
dice_myo = tot_myo/len(loader)
dice_rv = tot_rv/len(loader)
dice = tot/len(loader)
model_l.train()
model_r.train()
return r_loss, dice, dice_lv, dice_myo, dice_rv
def train(label_loader, unlabel_loader_0, unlabel_loader_1, test_loader, val_loader, learning_rate, weight_decay, num_epoch, model_path, niters_per_epoch):
# Initialize model
model_l, model_r = ini_model(config['restore'], config['restore_from'])
# loss
cross_criterion = nn.CrossEntropyLoss(reduction='mean', ignore_index=255)
# Initialize optimizer.
optimizer_l, optimizer_r = ini_optimizer(
model_l, model_r, learning_rate, weight_decay)
best_dice = 0
for epoch in range(num_epoch):
# ---------- Training ----------
model_l.train()
model_r.train()
label_dataloader = iter(label_loader)
unlabel_dataloader_0 = iter(unlabel_loader_0)
unlabel_dataloader_1 = iter(unlabel_loader_1)
# normal images
model_l, model_r, total_loss, total_loss_l, total_loss_r, total_cps_loss, total_con_loss = train_one_epoch(
model_l, model_r, niters_per_epoch, label_dataloader, unlabel_dataloader_0, unlabel_dataloader_1, optimizer_r, optimizer_l, cross_criterion, epoch)
# Print the information.
print(
f"[ Normal image Train | {epoch + 1:03d}/{num_epoch:03d} ] total_loss = {total_loss:.5f} total_loss_l = {total_loss_l:.5f} total_loss_r = {total_loss_r:.5f} total_cps_loss = {total_cps_loss:.5f}")
# ---------- Validation ----------
val_loss, val_dice, val_dice_lv, val_dice_myo, val_dice_rv = test_dual(
model_l, model_r, val_loader)
print(
f"[ Valid | {epoch + 1:03d}/{num_epoch:03d} ] val_loss = {val_loss:.5f} val_dice = {val_dice:.5f}")
# ---------- Testing (using ensemble)----------
test_loss, test_dice, test_dice_lv, test_dice_myo, test_dice_rv = test_dual(
model_l, model_r, test_loader)
print(
f"[ Test | {epoch + 1:03d}/{num_epoch:03d} ] test_loss = {test_loss:.5f} test_dice = {test_dice:.5f}")
# val
wandb.log({'val/val_dice': val_dice, 'val/val_dice_lv': val_dice_lv,
'val/val_dice_myo': val_dice_myo, 'val/val_dice_rv': val_dice_rv})
# test
wandb.log({'test/test_dice': test_dice, 'test/test_dice_lv': test_dice_lv,
'test/test_dice_myo': test_dice_myo, 'test/test_dice_rv': test_dice_rv})
# loss
wandb.log({'epoch': epoch + 1, 'loss/total_loss': total_loss, 'loss/total_loss_l': total_loss_l,
'loss/total_loss_r': total_loss_r, 'loss/total_cps_loss': total_cps_loss,
'loss/test_loss': test_loss, 'loss/val_loss': val_loss, 'loss/con_loss': total_con_loss })
# if the model improves, save a checkpoint at this epoch
if val_dice > best_dice:
best_dice = val_dice
# 使用了多GPU需要加上module
print('saving model with best_dice {:.5f}'.format(best_dice))
model_name_l = './tmodel/' + 'l_' + model_path
model_name_r = './tmodel/' + 'r_' + model_path
torch.save(model_l.module, model_name_l)
torch.save(model_r.module, model_name_r)
def main():
batch_size = config['batch_size']
num_workers = config['num_workers']
learning_rate = config['learning_rate']
weight_decay = config['weight_decay']
num_epoch = config['num_epoch']
model_path = config['model_path']
test_vendor = config['test_vendor']
label_loader, unlabel_loader_0, unlabel_loader_1, test_loader, val_loader, num_label_imgs, num_unsup_imgs = pre_data(
batch_size=batch_size, num_workers=num_workers, test_vendor=test_vendor)
max_samples = num_unsup_imgs
niters_per_epoch = int(math.ceil(max_samples * 1.0 // batch_size))
print("max_samples", max_samples)
print("niters_per_epoch", niters_per_epoch)
if config['Fourier_aug']:
print("Fourier mode")
else:
print("Normal mode")
train(label_loader, unlabel_loader_0, unlabel_loader_1, test_loader, val_loader, learning_rate,
weight_decay, num_epoch, model_path, niters_per_epoch)
if __name__ == '__main__':
main()