forked from svc-develop-team/so-vits-svc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_flist_config.py
94 lines (79 loc) · 3.51 KB
/
preprocess_flist_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import argparse
import re
from tqdm import tqdm
from random import shuffle
import json
import wave
import diffusion.logger.utils as du
config_template = json.load(open("configs_template/config_template.json"))
pattern = re.compile(r'^[\.a-zA-Z0-9_\/]+$')
def get_wav_duration(file_path):
with wave.open(file_path, 'rb') as wav_file:
# 获取音频帧数
n_frames = wav_file.getnframes()
# 获取采样率
framerate = wav_file.getframerate()
# 计算时长(秒)
duration = n_frames / float(framerate)
return duration
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
parser.add_argument("--source_dir", type=str, default="./dataset/44k", help="path to source dir")
parser.add_argument("--speech_encoder", type=str, default="vec768l12", help="choice a speech encoder|'vec768l12','vec256l9','hubertsoft'")
args = parser.parse_args()
train = []
val = []
idx = 0
spk_dict = {}
spk_id = 0
for speaker in tqdm(os.listdir(args.source_dir)):
spk_dict[speaker] = spk_id
spk_id += 1
wavs = ["/".join([args.source_dir, speaker, i]) for i in os.listdir(os.path.join(args.source_dir, speaker))]
new_wavs = []
for file in wavs:
if not file.endswith("wav"):
continue
if not pattern.match(file):
print(f"warning:文件名{file}中包含非字母数字下划线,可能会导致错误。(也可能不会)")
if get_wav_duration(file) < 0.3:
print("skip too short audio:", file)
continue
new_wavs.append(file)
wavs = new_wavs
shuffle(wavs)
train += wavs[2:]
val += wavs[:2]
shuffle(train)
shuffle(val)
print("Writing", args.train_list)
with open(args.train_list, "w") as f:
for fname in tqdm(train):
wavpath = fname
f.write(wavpath + "\n")
print("Writing", args.val_list)
with open(args.val_list, "w") as f:
for fname in tqdm(val):
wavpath = fname
f.write(wavpath + "\n")
d_config_template = du.load_config("configs_template/diffusion_template.yaml")
d_config_template["model"]["n_spk"] = spk_id
d_config_template["data"]["encoder"] = args.speech_encoder
d_config_template["spk"] = spk_dict
config_template["spk"] = spk_dict
config_template["model"]["n_speakers"] = spk_id
config_template["model"]["speech_encoder"] = args.speech_encoder
if args.speech_encoder == "vec768l12":
config_template["model"]["ssl_dim"] = config_template["model"]["filter_channels"] = config_template["model"]["gin_channels"] = 768
d_config_template["data"]["encoder_out_channels"] = 768
elif args.speech_encoder == "vec256l9" or args.speech_encoder == 'hubertsoft':
config_template["model"]["ssl_dim"] = config_template["model"]["filter_channels"] = config_template["model"]["gin_channels"] = 256
d_config_template["data"]["encoder_out_channels"] = 256
print("Writing configs/config.json")
with open("configs/config.json", "w") as f:
json.dump(config_template, f, indent=2)
print("Writing configs/diffusion_template.yaml")
du.save_config("configs/diffusion.yaml",d_config_template)