-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathsac.py
207 lines (182 loc) · 8.01 KB
/
sac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import tensorflow as tf
import time
class SAC:
"""Soft Actor-Critic (SAC)
Original code from Tuomas Haarnoja, Soroush Nasiriany, and Aurick Zhou for CS294-112 Fall 2018
References
----------
[1] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine, "Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning
with a Stochastic Actor," ICML 2018.
"""
def __init__(self,
alpha=1.0,
batch_size=256,
discount=0.99,
epoch_length=1000,
learning_rate=3e-3,
reparameterize=False,
tau=0.01,
**kwargs):
"""
Args:
"""
self._alpha = alpha
self._batch_size = batch_size
self._discount = discount
self._epoch_length = epoch_length
self._learning_rate = learning_rate
self._reparameterize = reparameterize
self._tau = tau
self._training_ops = []
def build(self, env, policy, q_function, q_function2, value_function,
target_value_function):
self._create_placeholders(env)
policy_loss = self._policy_loss_for(policy, q_function, q_function2, value_function)
value_function_loss = self._value_function_loss_for(
policy, q_function, q_function2, value_function)
q_function_loss = self._q_function_loss_for(q_function,
target_value_function)
if q_function2 is not None:
q_function2_loss = self._q_function_loss_for(q_function2,
target_value_function)
optimizer = tf.train.AdamOptimizer(
self._learning_rate, name='optimizer')
policy_training_op = optimizer.minimize(
loss=policy_loss, var_list=policy.trainable_variables)
value_training_op = optimizer.minimize(
loss=value_function_loss,
var_list=value_function.trainable_variables)
q_function_training_op = optimizer.minimize(
loss=q_function_loss, var_list=q_function.trainable_variables)
if q_function2 is not None:
q_function2_training_op = optimizer.minimize(
loss=q_function2_loss, var_list=q_function2.trainable_variables)
self._training_ops = [
policy_training_op, value_training_op, q_function_training_op
]
if q_function2 is not None:
self._training_ops += [q_function2_training_op]
self._target_update_ops = self._create_target_update(
source=value_function, target=target_value_function)
tf.get_default_session().run(tf.global_variables_initializer())
def _create_placeholders(self, env):
observation_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
self._observations_ph = tf.placeholder(
tf.float32,
shape=(None, observation_dim),
name='observation',
)
self._next_observations_ph = tf.placeholder(
tf.float32,
shape=(None, observation_dim),
name='next_observation',
)
self._actions_ph = tf.placeholder(
tf.float32,
shape=(None, action_dim),
name='actions',
)
self._rewards_ph = tf.placeholder(
tf.float32,
shape=(None, ),
name='rewards',
)
self._terminals_ph = tf.placeholder(
tf.float32,
shape=(None, ),
name='terminals',
)
def _policy_loss_for(self, policy, q_function, q_function2, value_function):
if not self._reparameterize:
### Problem 1.3.A
### YOUR CODE HERE
actions, log_pis = policy(self._observations_ph)
if q_function2 is None:
q_n = tf.squeeze(q_function((self._observations_ph, actions)), axis=1)
else:
q_n = tf.minimum(
tf.squeeze(q_function((self._observations_ph, actions)), axis=1),
tf.squeeze(q_function2((self._observations_ph, actions)), axis=1)
)
b_n = tf.squeeze(value_function(self._observations_ph), axis=1)
policy_loss = tf.reduce_mean(log_pis * tf.stop_gradient(self._alpha * log_pis - q_n + b_n))
else:
### Problem 1.3.B
### YOUR CODE HERE
actions, log_pis = policy(self._observations_ph)
if q_function2 is None:
q_n = tf.squeeze(q_function((self._observations_ph, actions)), axis=1)
else:
q_n = tf.minimum(
tf.squeeze(q_function((self._observations_ph, actions)), axis=1),
tf.squeeze(q_function2((self._observations_ph, actions)), axis=1)
)
b_n = tf.squeeze(value_function(self._observations_ph), axis=1)
policy_loss = tf.reduce_mean(self._alpha * log_pis - q_n)
return policy_loss
def _value_function_loss_for(self, policy, q_function, q_function2, value_function):
### Problem 1.2.A
### YOUR CODE HERE
actions, log_pis = policy(self._observations_ph)
if q_function2 is None:
q_n = tf.squeeze(q_function((self._observations_ph, actions)), axis=1)
else:
q_n = tf.minimum(
tf.squeeze(q_function((self._observations_ph, actions)), axis=1),
tf.squeeze(q_function2((self._observations_ph, actions)), axis=1)
)
v_n = tf.squeeze(value_function(self._observations_ph), axis=1)
value_function_loss = tf.losses.mean_squared_error(
q_n - self._alpha * log_pis,
v_n
)
return value_function_loss
def _q_function_loss_for(self, q_function, target_value_function):
### Problem 1.1.A
### YOUR CODE HERE
q_n = tf.squeeze(q_function((self._observations_ph, self._actions_ph)), axis=1)
next_v_n = tf.squeeze(target_value_function(self._next_observations_ph), axis=1)
q_function_loss = tf.losses.mean_squared_error(
self._rewards_ph + (1 - self._terminals_ph) * self._discount * next_v_n,
q_n
)
return q_function_loss
def _create_target_update(self, source, target):
"""Create tensorflow operations for updating target value function."""
return [
tf.assign(target, (1 - self._tau) * target + self._tau * source)
for target, source in zip(target.trainable_variables, source.
trainable_variables)
]
def train(self, sampler, n_epochs=1000):
"""Return a generator that performs RL training.
Args:
env (`rllab.Env`): Environment used for training
policy (`Policy`): Policy used for training
initial_exploration_policy ('Policy'): Policy used for exploration
If None, then all exploration is done using policy
pool (`PoolBase`): Sample pool to add samples to
"""
self._start = time.time()
for epoch in range(n_epochs):
for t in range(self._epoch_length):
sampler.sample()
batch = sampler.random_batch(self._batch_size)
feed_dict = {
self._observations_ph: batch['observations'],
self._actions_ph: batch['actions'],
self._next_observations_ph: batch['next_observations'],
self._rewards_ph: batch['rewards'],
self._terminals_ph: batch['terminals'],
}
tf.get_default_session().run(self._training_ops, feed_dict)
tf.get_default_session().run(self._target_update_ops)
yield epoch
def get_statistics(self):
statistics = {
'Time': time.time() - self._start,
'TimestepsThisBatch': self._epoch_length,
}
return statistics