-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathutils.py
223 lines (173 loc) · 6.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
import os
import tensorflow as tf
class Logger:
def __init__(self, log_dir):
self._summary_writer = tf.summary.FileWriter(
os.path.expanduser(log_dir))
self._rows = []
def log_value(self, tag, value, step):
summary = tf.Summary()
summary.value.add(tag=tag, simple_value=value)
self._summary_writer.add_summary(summary, step)
self._rows.append("{tag:.<25} {value}".format(tag=tag, value=value))
def log_values(self, dictionary, step):
for tag, value in dictionary.items():
self.log_value(tag, value, step)
def flush(self):
self._summary_writer.flush()
print(format("", "_<25"))
print("\n".join(self._rows))
self._rows = []
class ReplayPool:
def __init__(self, max_size, fields):
max_size = int(max_size)
self._max_size = max_size
self.fields = {}
self.field_names = []
self.add_fields(fields)
self._pointer = 0
self._size = 0
@property
def size(self):
return self._size
def add_fields(self, fields):
self.fields.update(fields)
self.field_names += list(fields.keys())
for field_name, field_attrs in fields.items():
field_shape = [self._max_size] + list(field_attrs['shape'])
initializer = field_attrs.get('initializer', np.zeros)
setattr(self, field_name, initializer(field_shape))
def _advance(self, count=1):
self._pointer = (self._pointer + count) % self._max_size
self._size = min(self._size + count, self._max_size)
def add_sample(self, **kwargs):
self.add_samples(1, **kwargs)
def add_samples(self, num_samples=1, **kwargs):
for field_name in self.field_names:
idx = np.arange(self._pointer,
self._pointer + num_samples) % self._max_size
getattr(self, field_name)[idx] = kwargs.pop(field_name)
self._advance(num_samples)
def random_indices(self, batch_size):
if self._size == 0: return []
return np.random.randint(0, self._size, batch_size)
def random_batch(self, batch_size, field_name_filter=None):
random_indices = self.random_indices(batch_size)
return self.batch_by_indices(random_indices, field_name_filter)
def batch_by_indices(self, indices, field_name_filter=None):
field_names = self.field_names
if field_name_filter is not None:
field_names = [
field_name for field_name in field_names
if field_name_filter(field_name)
]
return {
field_name: getattr(self, field_name)[indices]
for field_name in field_names
}
def get_statistics(self):
return {
'PoolSize': self._size,
}
class SimpleReplayPool(ReplayPool):
def __init__(self, observation_shape, action_shape, *args, **kwargs):
self._observation_shape = observation_shape
self._action_shape = action_shape
fields = {
'observations': {
'shape': self._observation_shape,
'dtype': 'float32'
},
# It's a bit memory inefficient to save the observations twice,
# but it makes the code *much* easier since you no longer have
# to worry about termination conditions.
'next_observations': {
'shape': self._observation_shape,
'dtype': 'float32'
},
'actions': {
'shape': self._action_shape,
'dtype': 'float32'
},
'rewards': {
'shape': [],
'dtype': 'float32'
},
# self.terminals[i] = a terminal was received at time i
'terminals': {
'shape': [],
'dtype': 'bool'
},
}
super(SimpleReplayPool, self).__init__(*args, fields=fields, **kwargs)
class Sampler(object):
def __init__(self, max_episode_length, prefill_steps):
self._max_episode_length = max_episode_length
self._prefill_steps = prefill_steps
self.env = None
self.policy = None
self.pool = None
def initialize(self, env, policy, pool):
self.env = env
self.policy = policy
self.pool = pool
class UniformPolicy:
def __init__(self, action_dim):
self._action_dim = action_dim
def eval(self, _):
return np.random.uniform(-1, 1, self._action_dim)
uniform_exploration_policy = UniformPolicy(env.action_space.shape[0])
for _ in range(self._prefill_steps):
self.sample(uniform_exploration_policy)
def set_policy(self, policy):
self.policy = policy
def sample(self):
raise NotImplementedError
def random_batch(self, batch_size):
return self.pool.random_batch(batch_size)
def terminate(self):
self.env.terminate()
class SimpleSampler(Sampler):
def __init__(self, **kwargs):
super(SimpleSampler, self).__init__(**kwargs)
self._episode_length = 0
self._episode_return = 0
self._last_episode_return = 0
self._max_episode_return = -np.inf
self._n_episodes = 0
self._current_observation = None
self._total_samples = 0
def sample(self, policy=None):
policy = self.policy if policy is None else policy
if self._current_observation is None:
self._current_observation = self.env.reset()
action = policy.eval(self._current_observation)
next_observation, reward, terminal, info = self.env.step(action)
self._episode_length += 1
self._episode_return += reward
self._total_samples += 1
self.pool.add_sample(
observations=self._current_observation,
actions=action,
rewards=reward,
terminals=terminal,
next_observations=next_observation)
if terminal or self._episode_length >= self._max_episode_length:
self._current_observation = self.env.reset()
self._episode_length = 0
self._max_episode_return = max(self._max_episode_return,
self._episode_return)
self._last_episode_return = self._episode_return
self._episode_return = 0
self._n_episodes += 1
else:
self._current_observation = next_observation
def get_statistics(self):
statistics = {
'MaxEpReturn': self._max_episode_return,
'LastEpReturn': self._last_episode_return,
'Episodes': self._n_episodes,
'TimestepsSoFar': self._total_samples,
}
return statistics