generated from xz259/ai-text-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqlora fine-tuning.py
163 lines (135 loc) · 4.63 KB
/
qlora fine-tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import re
import sys
import gc
import random
import numpy as np
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModel, AutoConfig, set_seed
from transformers import get_linear_schedule_with_warmup, get_cosine_schedule_with_warmup
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import get_peft_config, PeftModel, PeftConfig, get_peft_model, LoraConfig, TaskType
from datasets import Dataset
from torch.utils.data import DataLoader
from sklearn.metrics import accuracy_score, roc_auc_score
from scipy.special import expit as sigmoid
from transformers import EarlyStoppingCallback, TrainingArguments, Trainer
# Constants
MODEL_PATH = "/path/to/model"
DEBUG = False
# Set up CUDA and random seed
torch.backends.cuda.enable_mem_efficient_sdp(False)
torch.backends.cudnn.benchmark = True
def seed_everything(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
seed_everything()
# Load and prepare data
def load_data(train_path, val_path, sample_size=None):
train_df = pd.read_csv(train_path)
val_df = pd.read_csv(val_path)
if sample_size:
train_df = train_df.head(sample_size)
val_df = val_df.head(sample_size)
train_df["Match"] = train_df["Match"].astype(int)
val_df["Match"] = val_df["Match"].astype(int)
train_df = train_df.rename(columns={"Match": "label", "Solution": "text"})
val_df = val_df.rename(columns={"Match": "label", "Solution": "text"})
cols = ["text", "label"]
return train_df[cols], val_df[cols]
train_df, val_df = load_data("/path/to/train.csv", "/path/to/val.csv", sample_size=500 if DEBUG else None)
# Prepare datasets
def prepare_datasets(train_df, val_df):
train_ds = Dataset.from_pandas(train_df)
val_ds = Dataset.from_pandas(val_df)
def preprocess_function(examples, max_length=2048):
tokenized_inputs = tokenizer(examples['text'], max_length=max_length, truncation=True)
tokenized_inputs['labels'] = examples['label']
return tokenized_inputs
train_tokenized_ds = train_ds.map(preprocess_function, batched=True)
val_tokenized_ds = val_ds.map(preprocess_function, batched=True)
return train_tokenized_ds, val_tokenized_ds
# Model setup
config = AutoConfig.from_pretrained(MODEL_PATH)
config.gradient_checkpointing = False
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
tokenizer.pad_token = tokenizer.eos_token
# Quantization configuration
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
)
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
config=config,
device_map="auto",
quantization_config=quantization_config,
)
base_model.config.pretraining_tp = 1
base_model.config.pad_token_id = tokenizer.pad_token_id
# Setup LoRA configuration
target_modules = ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'down_proj', 'up_proj']
peft_config = LoraConfig(
r=256,
lora_alpha=128,
bias="none",
task_type=TaskType.SEQ_CLS,
inference_mode=False,
target_modules=target_modules,
rank_pattern={'gate_proj': 256, 'down_proj': 128, 'up_proj': 128}
)
# Get PEFT model
model = get_peft_model(base_model, peft_config)
model.print_trainable_parameters()
# Prepare datasets
train_tokenized_ds, val_tokenized_ds = prepare_datasets(train_df, val_df)
# Evaluation metric
def compute_metrics(eval_pred):
logits, labels = eval_pred
preds = sigmoid(logits[:, 1])
auc = roc_auc_score(labels, preds)
return {"roc_auc": auc}
# Training arguments
training_args = TrainingArguments(
output_dir="/path/to/output",
learning_rate=1e-5,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
gradient_accumulation_steps=32,
max_grad_norm=0.5,
optim="adamw_torch",
lr_scheduler_type="cosine",
num_train_epochs=5,
weight_decay=0.2,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
push_to_hub=False,
warmup_steps=30,
logging_steps=500,
metric_for_best_model="roc_auc",
save_total_limit=2,
)
# Trainer setup
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_tokenized_ds,
eval_dataset=val_tokenized_ds,
tokenizer=tokenizer,
data_collator=None,
compute_metrics=compute_metrics,
callbacks=[EarlyStoppingCallback(early_stopping_patience=2)],
)
# Training
def train():
trainer.train()
if __name__ == "__main__":
train()