generated from xz259/ai-text-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatistical_features_classifier.py
83 lines (69 loc) · 2.76 KB
/
statistical_features_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score
from collections import defaultdict
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import joblib
# Load the QLoRA model and tokenizer
MODEL_PATH = "/path/to/base/model"
ADAPTER_PATH = "/path/to/qlora/adapter"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
base_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
model = PeftModel.from_pretrained(base_model, ADAPTER_PATH)
model.eval()
# Function to make predictions using the QLoRA model
def predict_qlora(text, max_length=1024):
inputs = tokenizer(text, return_tensors="pt", max_length=max_length, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits[:, -1, :]
probs = torch.softmax(logits, dim=-1)
return probs[0, 1].item() # Return probability of positive class
# Function to extract statistical features
def extract_features(probabilities):
if len(probabilities) == 1:
return [1, probabilities[0], probabilities[0], probabilities[0], probabilities[0], 0, 0]
else:
return [
len(probabilities),
min(probabilities),
max(probabilities),
np.mean(probabilities),
np.median(probabilities),
np.std(probabilities),
np.percentile(probabilities, 75) - np.percentile(probabilities, 25) # IQR
]
# Load and preprocess the synthetic data
df = pd.read_csv("/path/to/synthetic_solutions.csv")
# Group solutions by problem and predicted answer
grouped_solutions = defaultdict(lambda: defaultdict(list))
for _, row in df.iterrows():
prob = predict_qlora(row['solution'])
grouped_solutions[row['problem']][row['answer']].append(prob)
# Extract features for each group
features = []
labels = []
for problem, answers in grouped_solutions.items():
for answer, probs in answers.items():
features.append(extract_features(probs))
labels.append(1 if answer == df[df['problem'] == problem]['correct_answer'].iloc[0] else 0)
# Convert to numpy arrays
X = np.array(features)
y = np.array(labels)
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train logistic regression
clf = LogisticRegression(random_state=42)
clf.fit(X_train, y_train)
# Evaluate
train_auc = roc_auc_score(y_train, clf.predict_proba(X_train)[:, 1])
test_auc = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
print(f"Train AUC: {train_auc}")
print(f"Test AUC: {test_auc}")
# Save the model
joblib.dump(clf, 'logistic_regression_classifier.joblib')
print("Logistic Regression Classifier saved.")