-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmnist.py
273 lines (233 loc) · 11.4 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# coding: utf-8
from __future__ import division, print_function, unicode_literals, absolute_import
import numpy as np
from keras.datasets import mnist
import keras
import keras.backend as K
from LeNet import LeNet
from keras.losses import categorical_crossentropy as logloss
from fc import StudentModel
import fc
import tensorflow as tf
import time
import utils
from datetime import datetime
import math
import lenet
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer('batch_size', 1800, 'batch_size')
tf.flags.DEFINE_integer('hk', 25, 'number of top hidden layer neurons')
tf.flags.DEFINE_integer('stdnt_share', 5000, 'student share')
tf.flags.DEFINE_integer('max_steps', 3000, 'max steps train students')
tf.flags.DEFINE_float('epsilon', 0.15, 'privacy epsilon')
tf.flags.DEFINE_float('delta', 1e-5, 'privacy delta')
tf.flags.DEFINE_float('label_ratio', 0.5, 'ratio of labeled data')
def preprocessing():
(train_data, train_labels), (test_data, test_labels) = mnist.load_data()
# train_data = K.expand_dims(train_labels, axis=-1)
img_rows, img_cols = 28, 28
train_data = train_data.reshape(train_data.shape[0], img_rows, img_cols, 1)
test_data = test_data.reshape(test_data.shape[0], img_rows, img_cols, 1)
train_data = train_data.astype('float32') / 255
test_data = test_data.astype('float32') / 255
train_labels = keras.utils.to_categorical(train_labels, 10)
test_labels = keras.utils.to_categorical(test_labels, 10)
return train_data, train_labels, test_data, test_labels
def preprocessing_img():
(train_data, train_labels), (test_data, test_labels) = mnist.load_data()
train_data = train_data.astype('float32') / 255
test_data = test_data.astype('float32') / 255
train_labels = keras.utils.to_categorical(train_labels, 10)
test_labels = keras.utils.to_categorical(test_labels, 10)
return train_data, train_labels, test_data, test_labels
def perturb(train_labels):
mask = np.random.uniform(size=train_labels.shape[0])
null = np.ones(shape=[10], dtype=np.float32) * 1.0
train_labels[mask > FLAGS.label_ratio] = null
# null1 = np.ones(shape=[10], dtype=np.float32)
# null2 = np.zeros(shape=[10], dtype=np.float32)
# t = (1-FLAGS.label_ratio) / 2
# train_labels[np.logical_and(mask > FLAGS.label_ratio, mask < FLAGS.label_ratio + t)] = null1
# train_labels[mask >= FLAGS.label_ratio + t] = null2
return train_labels
def build_lenet():
train_data, train_labels, test_data, test_labels = preprocessing()
train_labels = perturb(train_labels)
print(train_data.shape)
op = keras.optimizers.Adam()
model = LeNet.build(width=28, height=28, depth=1, classes=10)
model.compile(loss='binary_crossentropy', optimizer=op, metrics=['accuracy'])
print("[INFO] training...")
model.fit(train_data, train_labels, batch_size=128, nb_epoch=30, verbose=1)
print("[INFO] evaluating...")
(loss, accuracy) = model.evaluate(test_data, test_labels, batch_size=128, verbose=1)
print("[INFO] accuracy: {:.2f}%".format(accuracy * 100))
weightsPath = './weights/LeNet.hdf5'
print("[INFO] dumping weights to file...")
model.save_weights(weightsPath, overwrite=True)
def loss_fun(y_true, y_pred):
'''
y_true is teacher's prediction vector
'''
return logloss(y_true, y_pred)
def distillation():
'''
distillation of lenet knowledge
'''
train_data, train_labels, test_data, test_labels = preprocessing()
student_share = 1000
train_data = test_data[:student_share]
# train_labels = test_labels[:student_share]
weightsPath = './weights/LeNet.hdf5'
lenet = LeNet.build(width=28, height=28, depth=1, classes=10)
lenet.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adam(), metrics=['accuracy'])
lenet.load_weights(weightsPath)
train_labels = lenet.predict(train_data)
# print(train_labels[:10])
# x = input()
train_data = train_data.reshape(train_data.shape[0], -1)
test_data = test_data.reshape(test_data.shape[0], -1)
test_data = test_data[student_share:]
test_labels = test_labels[student_share:]
op = keras.optimizers.Adam()
model = StudentModel.build(train_data.shape[1], 10)
model.compile(optimizer=op, loss=lambda y_true, y_pred: loss_fun(y_true, y_pred), metrics=['accuracy'])
model.fit(train_data, train_labels, batch_size=128, nb_epoch=20, verbose=1)
print("[INFO] evaluating...")
(loss, accuracy) = model.evaluate(test_data, test_labels, batch_size=128, verbose=1)
print("[INFO] accuracy: {:.2f}%".format(accuracy * 100))
def train_with_noise_ce(train_data, train_labels, ckpt_path):
tf.reset_default_graph()
with tf.Graph().as_default() as g:
train_data_shape = train_data.shape
# train_data_node = tf.placeholder(dtype=tf.float32, shape=[None, train_data_shape], name='train_data_node')
train_data_node = tf.placeholder(dtype=tf.float32, shape=[None, train_data_shape[1], train_data_shape[2], train_data_shape[3]], name='train_data_node')
train_labels_node = tf.placeholder(dtype=tf.float32, shape=[None, 10], name='test_labels_node')
print('placeholder done')
# logits = fc.inference(train_data_node)
# loss = fc.loss_fun(logits, train_labels_node)
logits = lenet.inference(train_data_node)
loss = lenet.loss_fun(logits, train_labels_node)
# print(loss.get_shape())
op = tf.train.AdamOptimizer(learning_rate=5e-4, beta1=0.9, beta2=0.999, name="student_op").minimize(loss)
saver = tf.train.Saver(tf.global_variables())
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
data_length = len(train_data)
for step in xrange(FLAGS.max_steps):
start_time = time.time()
batch_indices = utils.random_batch_indices(data_length, FLAGS.batch_size)
feed_dict = {train_data_node: train_data[batch_indices],
train_labels_node: train_labels[batch_indices]}
_, loss_value= sess.run([op, loss], feed_dict = feed_dict)
duration = time.time() - start_time
if step % 100 == 0:
num_examples_per_step = FLAGS.batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)
format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)')
print(format_str % (datetime.now(), step, np.mean(loss_value), examples_per_sec, sec_per_batch))
if step % 1000 == 0 or (step+1) == FLAGS.max_steps:
saver.save(sess, ckpt_path, global_step=step)
return True
def softmax_preds(images, ckpt_path, return_logits=False):
"""
Compute softmax activations (probabilities) with the model saved in the path
specified as an argument
:param images: a np array of images
:param ckpt_path: a TF model checkpoint
:param logits: if set to True, return logits instead of probabilities
:return: probabilities (or logits if logits is set to True)
"""
# Compute nb samples and deduce nb of batches
data_length = len(images)
nb_batches = math.ceil(len(images) / FLAGS.batch_size)
# Declare data placeholder
# train_data_node = tf.placeholder(dtype=tf.float32, shape=[None, images.shape[-1]])
train_data_node = tf.placeholder(dtype=tf.float32, shape=[None, images.shape[1], images.shape[2], images.shape[3]])
# Build a Graph that computes the logits predictions from the placeholder
# logits = fc.inference(train_data_node)
logits = lenet.inference(train_data_node)
# logits = inference2(train_data_node)
if return_logits:
# We are returning the logits directly (no need to apply softmax)
output = logits
else:
# Add softmax predictions to graph: will return probabilities
output = tf.nn.softmax(logits)
# Restore the moving average version of the learned variables for eval.
# variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY)
# variables_to_restore = variable_averages.variables_to_restore()
# saver = tf.train.Saver(variables_to_restore)
saver = tf.train.Saver()
# Will hold the result
preds = np.zeros((data_length, 10), dtype=np.float32)
# Create TF session
with tf.Session() as sess:
# Restore TF session from checkpoint file
saver.restore(sess, ckpt_path)
# Parse data by batch
for batch_nb in xrange(0, int(nb_batches+1)):
# Compute batch start and end indices
start, end = utils.batch_indices(batch_nb, data_length, FLAGS.batch_size)
# Prepare feed dictionary
feed_dict = {train_data_node: images[start:end]}
# Run session ([0] because run returns a batch with len 1st dim == 1)
preds[start:end, :] = sess.run([output], feed_dict=feed_dict)[0]
# Reset graph to allow multiple calls
tf.reset_default_graph()
return preds
def train_pl():
ckpt_path = './train_dir/mnist_pl.ckpt'
train_data, train_labels, test_data, test_labels = preprocessing()
train_data = np.pad(train_data, ((0, 0), (2,2), (2,2), (0,0)), 'constant')
test_data = np.pad(test_data, ((0, 0), (2,2), (2,2), (0,0)), 'constant')
# train_data, train_labels, test_data, test_labels = preprocessing_img()
# train_data = train_data.reshape(train_data.shape[0], -1)
# test_data = test_data.reshape(test_data.shape[0], -1)
train_labels = perturb(train_labels)
assert train_with_noise_ce(train_data, train_labels, ckpt_path)
ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps-1)
logits = softmax_preds(train_data, ckpt_path_final)
accuracy = np.sum(np.argmax(logits, -1) == np.argmax(train_labels, -1)) / len(train_labels)
print("student's train accuracy is ", accuracy)
logits = softmax_preds(test_data, ckpt_path_final)
accuracy = np.sum(np.argmax(logits, -1) == np.argmax(test_labels, -1)) / len(test_labels)
print("student's test accuracy is ", accuracy)
return True
def train_student():
ckpt_path = './train_dir/mnist_student.ckpt'
train_data, train_labels, test_data, test_labels = preprocessing()
# student_share = 1000
student_share = FLAGS.stdnt_share
train_data = test_data[:student_share]
# train_labels = test_labels[:student_share]
weightsPath = './weights/LeNet.hdf5'
lenet = LeNet.build(width=28, height=28, depth=1, classes=10)
lenet.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adam(), metrics=['accuracy'])
lenet.load_weights(weightsPath)
train_labels = lenet.predict(train_data)
# print(train_labels[:10])
# x = input()
train_data = train_data.reshape(train_data.shape[0], -1)
test_data = test_data.reshape(test_data.shape[0], -1)
test_data = test_data[student_share:]
test_labels = test_labels[student_share:]
print("data preprocessing done")
assert train_with_noise_ce(train_data, train_labels, ckpt_path)
ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps-1)
logits = softmax_preds(train_data, ckpt_path_final)
accuracy = np.sum(np.argmax(logits, -1) == np.argmax(train_labels, -1)) / len(train_labels)
print("student's train accuracy is ", accuracy)
logits = softmax_preds(test_data, ckpt_path_final)
accuracy = np.sum(np.argmax(logits, -1) == np.argmax(test_labels, -1)) / len(test_labels)
print("student's test accuracy is ", accuracy)
return True
def main(argv=None):
# assert train_student()
assert train_pl()
if __name__ == '__main__':
main()
# distillation()
# build_lenet()