-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_generator.py
162 lines (133 loc) · 5.45 KB
/
dataset_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import pandas as pd
import os
from torchvision.io import read_image
from PIL import Image
from torch.utils.data import Dataset
import torchvision.datasets as datasets
import torchvision.transforms.v2 as transforms
import torch
### Gatto define your transforms we may jit'em if needed
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision.transforms import v2
from torch.utils.data import default_collate
def return_transforms():
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
### Here we define the transformation functions for training and testing
transforms_train = transforms.Compose([
transforms.RandomResizedCrop((224,224)),
transforms.RandAugment(), ## RandAugment ---
transforms.RandomHorizontalFlip(),
transforms.RandomErasing(),
transforms.ToImage(),
transforms.ToDtype(torch.float32, scale=True),
transforms.Normalize(mean, std)
])
transforms_test = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToImage(),
transforms.ToDtype(torch.float32, scale=True),
transforms.Normalize(mean, std)
])
return transforms_train, transforms_test
transforms_train, transforms_test = return_transforms()
def train_data(root_dir:str,
transformations = transforms_train):
Images = datasets.ImageFolder(root = root_dir,
transform = transformations,
)
dict_ = Images.class_to_idx
### The dictionary above is pretty important as this will
return Images, dict_
class test_data(Dataset):
def __init__(self,
classes_dict:dict,
csv_file:str,
root_dir:str,
transformations = transforms_test,
):
super().__init__()
self.root_dir = root_dir
self.classes_dict = classes_dict
###
self.file = pd.read_csv(csv_file)
self.file_names = self.file.iloc[:,0]
self.anotations = self.file.iloc[:,1].apply(self.__split__)
###
self.transformations = transformations
def __len__(self):
return len(self.anotations)
def __getitem__(self, index):
## First images
image = os.path.join(self.root_dir, self.file_names[index]+ ".JPEG")
### We need to test where .rgb method introduces some latency in the case
### that the image already has 3 channels!!!
image_ = Image.open(image).convert('RGB')
transformed_image = self.transformations(image_)
## now the labels
anotations = self.anotations[index]
classes = self.classes_dict[anotations]
return transformed_image, classes, anotations
def __split__(self, n):
return n.split()[0]
def train_val_data_loader(train_data, test_data, **kwargs):
### This dude prepares the training and validation data ###
root_dir_train = kwargs["train_path"]["root_dir"]
root_dir_val = kwargs["val_path"]["root_dir"]
csv_file_val = kwargs["val_path"]["csv_file"]
##
train_image_generator, dict_val = train_data(root_dir = root_dir_train)
test_image_generator = test_data(root_dir = root_dir_val,
csv_file = csv_file_val,
classes_dict = dict_val
)
##
kwargs_train = kwargs["train_data_details"]
kwargs_test = kwargs["val_data_details"]
##
train_sampler = DistributedSampler(train_image_generator, shuffle = True)
val_sampler = DistributedSampler(test_image_generator, shuffle = False)
## --- MixUp and CutMix --- ##
NUM_CLASSES = 1000
cutmix = v2.CutMix(num_classes=NUM_CLASSES)
mixup = v2.MixUp(num_classes=NUM_CLASSES, alpha = 0.8)
cutmix_or_mixup = v2.RandomChoice([cutmix, mixup])
collate_fn = lambda batch : cutmix_or_mixup(*default_collate(batch))
train_data = DataLoader(
dataset= train_image_generator,
sampler = train_sampler,
collate_fn=collate_fn,
**kwargs_train,
)
test_data = DataLoader(
dataset= test_image_generator,
sampler = val_sampler,
**kwargs_test,
)
return train_data, test_data
def fake_data_loader(train_samples:int = 10000,
val_samples:int = 500, **kwargs):
## This is a fake dataset generator for debugging purposes
train_data = torch.randn(train_samples, 3, 224, 224)
train_labels = torch.randint(low = 0, high = 1000, size = (train_samples,))
val_data = torch.randn(val_samples, 3, 224, 224)
val_labels = torch.randint(low = 0, high = 1000, size = (val_samples,))
class FakeDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.data)
def __getitem__(self, index):
image, label = self.data[index], self.labels[index]
return image, label
train_dataset = FakeDataset(train_data, train_labels)
val_dataset = FakeDataset(val_data, val_labels)
train_sampler = DistributedSampler(train_dataset, shuffle=True)
val_sampler = DistributedSampler(val_dataset, shuffle=False)
train_data_loader = DataLoader(train_dataset, sampler=train_sampler, batch_size = 32, **kwargs)
val_data_loader = DataLoader(val_dataset, sampler=val_sampler, batch_size = 32, **kwargs)
return train_data_loader, val_data_loader
if __name__ == '__main__':
print("Ok boomer!!!")