forked from mlverse/torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
169 lines (169 loc) · 3.86 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
Package: torch
Type: Package
Title: Tensors and Neural Networks with 'GPU' Acceleration
Version: 0.8.1.9000
Authors@R: c(
person("Daniel", "Falbel", email = "[email protected]", role = c("aut", "cre", "cph")),
person("Javier", "Luraschi", email = "[email protected]", role = c("aut")),
person("Dmitriy", "Selivanov", role = c("ctb")),
person("Athos", "Damiani", role = c("ctb")),
person("Christophe", "Regouby", role = c("ctb")),
person("Krzysztof", "Joachimiak", role = c("ctb")),
person("Hamada S.", "Badr", role = c("ctb")),
person(family = "RStudio", role = c("cph"))
)
Description: Provides functionality to define and train neural networks similar to
'PyTorch' by Paszke et al (2019) <arXiv:1912.01703> but written entirely in R
using the 'libtorch' library. Also supports low-level tensor operations and
'GPU' acceleration.
License: MIT + file LICENSE
URL: https://torch.mlverse.org/docs, https://github.com/mlverse/torch
BugReports: https://github.com/mlverse/torch/issues
Encoding: UTF-8
SystemRequirements: C++11, LibTorch (https://pytorch.org/); Only x86_64 platforms
are currently supported.
LinkingTo:
Rcpp
Imports:
Rcpp,
R6,
withr,
rlang,
methods,
utils,
stats,
bit64,
magrittr,
tools,
coro (>= 1.0.2),
callr,
cli,
ellipsis
RoxygenNote: 7.2.1
Roxygen: list(markdown = TRUE)
Suggests:
testthat (>= 3.0.0),
covr,
knitr (>= 1.36),
rmarkdown,
glue,
palmerpenguins,
mvtnorm,
numDeriv,
katex
VignetteBuilder: knitr
Collate:
'R7.R'
'RcppExports.R'
'tensor.R'
'autograd.R'
'backends.R'
'call_torch_function.R'
'codegen-utils.R'
'compat-purrr.R'
'compilation_unit.R'
'conditions.R'
'contrib.R'
'creation-ops.R'
'cuda.R'
'device.R'
'dimname_list.R'
'utils.R'
'distributions-constraints.R'
'distributions-utils.R'
'distributions-exp-family.R'
'distributions.R'
'distributions-bernoulli.R'
'distributions-categorical.R'
'distributions-gamma.R'
'distributions-chi2.R'
'distributions-mixture_same_family.R'
'distributions-multivariate_normal.R'
'distributions-normal.R'
'distributions-poisson.R'
'dtype.R'
'gen-method.R'
'gen-namespace-docs.R'
'gen-namespace-examples.R'
'gen-namespace.R'
'generator.R'
'help.R'
'indexing.R'
'install.R'
'ivalue.R'
'jit-compile.R'
'lantern_load.R'
'lantern_sync.R'
'layout.R'
'linalg.R'
'memory_format.R'
'utils-data.R'
'nn.R'
'nn-activation.R'
'nn-batchnorm.R'
'nn-conv.R'
'nn-distance.R'
'nn-dropout.R'
'nn-flatten.R'
'nn-init.R'
'nn-linear.R'
'nn-loss.R'
'nn-normalization.R'
'nn-pooling.R'
'nn-rnn.R'
'nn-sparse.R'
'nn-upsampling.R'
'nn-utils-clip-grad.R'
'nn-utils-rnn.R'
'nn-utils.R'
'nn_adaptive.R'
'nnf-activation.R'
'nnf-batchnorm.R'
'nnf-conv.R'
'nnf-distance.R'
'nnf-dropout.R'
'nnf-embedding.R'
'nnf-fold.R'
'nnf-instancenorm.R'
'nnf-linear.R'
'nnf-loss.R'
'nnf-normalization.R'
'nnf-padding.R'
'nnf-pixelshuffle.R'
'nnf-pooling.R'
'nnf-upsampling.R'
'nnf-vision.R'
'operators.R'
'optim.R'
'optim-adadelta.R'
'optim-adagrad.R'
'optim-adam.R'
'optim-asgd.R'
'optim-lbfgs.R'
'optim-lr_scheduler.R'
'optim-rmsprop.R'
'optim-rprop.R'
'optim-sgd.R'
'package.R'
'qscheme.R'
'quantization.R'
'reduction.R'
'save.R'
'scalar.R'
'script_module.R'
'stack.R'
'storage.R'
'tensor_options.R'
'threads.R'
'trace.R'
'translate.R'
'type-info.R'
'utils-data-collate.R'
'utils-data-dataloader.R'
'utils-data-enum.R'
'utils-data-fetcher.R'
'utils-data-sampler.R'
'utils-pipe.R'
'variable_list.R'
'with-indices.R'
'wrapers.R'