This repository has been archived by the owner on Jun 27, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnms_cuda_2d3d.cu
220 lines (184 loc) · 7.43 KB
/
nms_cuda_2d3d.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*
NMS implementation in CUDA from pytorch framework
(https://github.com/pytorch/vision/tree/master/torchvision/csrc/cuda on Nov 13 2019)
Adapted for additional 3D capability by G. Ramien, DKFZ Heidelberg
*/
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include "cuda_helpers.h"
#include <iostream>
#include <vector>
int const threadsPerBlock = sizeof(unsigned long long) * 8;
template <typename T>
__device__ inline float devIoU(T const* const a, T const* const b) {
// a, b hold box coords as (y1, x1, y2, x2) with y1 < y2 etc.
T bottom = max(a[0], b[0]), top = min(a[2], b[2]);
T left = max(a[1], b[1]), right = min(a[3], b[3]);
T width = max(right - left, (T)0), height = max(top - bottom, (T)0);
T interS = width * height;
T Sa = (a[2] - a[0]) * (a[3] - a[1]);
T Sb = (b[2] - b[0]) * (b[3] - b[1]);
return interS / (Sa + Sb - interS);
}
template <typename T>
__device__ inline float devIoU_3d(T const* const a, T const* const b) {
// a, b hold box coords as (y1, x1, y2, x2, z1, z2) with y1 < y2 etc.
// get coordinates of intersection, calc intersection
T bottom = max(a[0], b[0]), top = min(a[2], b[2]);
T left = max(a[1], b[1]), right = min(a[3], b[3]);
T front = max(a[4], b[4]), back = min(a[5], b[5]);
T width = max(right - left, (T)0), height = max(top - bottom, (T)0);
T depth = max(back - front, (T)0);
T interS = width * height * depth;
// calc separate boxes volumes
T Sa = (a[2] - a[0]) * (a[3] - a[1]) * (a[5] - a[4]);
T Sb = (b[2] - b[0]) * (b[3] - b[1]) * (b[5] - b[4]);
return interS / (Sa + Sb - interS);
}
template <typename T>
__global__ void nms_kernel(const int n_boxes, const float iou_threshold, const T* dev_boxes,
unsigned long long* dev_mask) {
const int row_start = blockIdx.y;
const int col_start = blockIdx.x;
// if (row_start > col_start) return;
const int row_size =
min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
const int col_size =
min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
__shared__ T block_boxes[threadsPerBlock * 4];
if (threadIdx.x < col_size) {
block_boxes[threadIdx.x * 4 + 0] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 0];
block_boxes[threadIdx.x * 4 + 1] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 1];
block_boxes[threadIdx.x * 4 + 2] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 2];
block_boxes[threadIdx.x * 4 + 3] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 4 + 3];
}
__syncthreads();
if (threadIdx.x < row_size) {
const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
const T* cur_box = dev_boxes + cur_box_idx * 4;
int i = 0;
unsigned long long t = 0;
int start = 0;
if (row_start == col_start) {
start = threadIdx.x + 1;
}
for (i = start; i < col_size; i++) {
if (devIoU<T>(cur_box, block_boxes + i * 4) > iou_threshold) {
t |= 1ULL << i;
}
}
const int col_blocks = at::cuda::ATenCeilDiv(n_boxes, threadsPerBlock);
dev_mask[cur_box_idx * col_blocks + col_start] = t;
}
}
template <typename T>
__global__ void nms_kernel_3d(const int n_boxes, const float iou_threshold, const T* dev_boxes,
unsigned long long* dev_mask) {
const int row_start = blockIdx.y;
const int col_start = blockIdx.x;
// if (row_start > col_start) return;
const int row_size =
min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
const int col_size =
min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
__shared__ T block_boxes[threadsPerBlock * 6];
if (threadIdx.x < col_size) {
block_boxes[threadIdx.x * 6 + 0] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 0];
block_boxes[threadIdx.x * 6 + 1] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 1];
block_boxes[threadIdx.x * 6 + 2] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 2];
block_boxes[threadIdx.x * 6 + 3] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 3];
block_boxes[threadIdx.x * 6 + 4] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 4];
block_boxes[threadIdx.x * 6 + 5] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 5];
}
__syncthreads();
if (threadIdx.x < row_size) {
const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
const T* cur_box = dev_boxes + cur_box_idx * 6;
int i = 0;
unsigned long long t = 0;
int start = 0;
if (row_start == col_start) {
start = threadIdx.x + 1;
}
for (i = start; i < col_size; i++) {
if (devIoU_3d<T>(cur_box, block_boxes + i * 6) > iou_threshold) {
t |= 1ULL << i;
}
}
const int col_blocks = at::cuda::ATenCeilDiv(n_boxes, threadsPerBlock);
dev_mask[cur_box_idx * col_blocks + col_start] = t;
}
}
at::Tensor nms_cuda(const at::Tensor& dets, const at::Tensor& scores, double iou_threshold) {
/* dets expected as (n_dets, dim) where dim=4 in 2D, dim=6 in 3D */
AT_ASSERTM(dets.type().is_cuda(), "dets must be a CUDA tensor");
AT_ASSERTM(scores.type().is_cuda(), "scores must be a CUDA tensor");
at::cuda::CUDAGuard device_guard(dets.device());
bool is_3d = dets.size(1) == 6;
auto order_t = std::get<1>(scores.sort(0, /* descending=*/true));
auto dets_sorted = dets.index_select(0, order_t);
int dets_num = dets.size(0);
const int col_blocks = at::cuda::ATenCeilDiv(dets_num, threadsPerBlock);
at::Tensor mask =
at::empty({dets_num * col_blocks}, dets.options().dtype(at::kLong));
dim3 blocks(col_blocks, col_blocks);
dim3 threads(threadsPerBlock);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (is_3d) {
//std::cout << "performing NMS on 3D boxes in CUDA" << std::endl;
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
dets_sorted.type(), "nms_kernel_cuda", [&] {
nms_kernel_3d<scalar_t><<<blocks, threads, 0, stream>>>(
dets_num,
iou_threshold,
dets_sorted.data_ptr<scalar_t>(),
(unsigned long long*)mask.data_ptr<int64_t>());
});
}
else {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
dets_sorted.type(), "nms_kernel_cuda", [&] {
nms_kernel<scalar_t><<<blocks, threads, 0, stream>>>(
dets_num,
iou_threshold,
dets_sorted.data_ptr<scalar_t>(),
(unsigned long long*)mask.data_ptr<int64_t>());
});
}
at::Tensor mask_cpu = mask.to(at::kCPU);
unsigned long long* mask_host = (unsigned long long*)mask_cpu.data_ptr<int64_t>();
std::vector<unsigned long long> remv(col_blocks);
memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks);
at::Tensor keep =
at::empty({dets_num}, dets.options().dtype(at::kLong).device(at::kCPU));
int64_t* keep_out = keep.data_ptr<int64_t>();
int num_to_keep = 0;
for (int i = 0; i < dets_num; i++) {
int nblock = i / threadsPerBlock;
int inblock = i % threadsPerBlock;
if (!(remv[nblock] & (1ULL << inblock))) {
keep_out[num_to_keep++] = i;
unsigned long long* p = mask_host + i * col_blocks;
for (int j = nblock; j < col_blocks; j++) {
remv[j] |= p[j];
}
}
}
AT_CUDA_CHECK(cudaGetLastError());
return order_t.index(
{keep.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep)
.to(order_t.device(), keep.scalar_type())});
}