forked from hankcs/neural_net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bpnn.py
226 lines (189 loc) · 5.75 KB
/
bpnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# coding=utf-8
# 反向传播神经网络
#
# Written in Python. See http://www.python.org/
# Placed in the public domain.
# Neil Schemenauer <[email protected]>
import math
import random
random.seed(0)
def rand(a, b):
"""
创建一个满足 a <= rand < b 的随机数
:param a:
:param b:
:return:
"""
return (b - a) * random.random() + a
def makeMatrix(I, J, fill=0.0):
"""
创建一个矩阵(可以考虑用NumPy来加速)
:param I: 行数
:param J: 列数
:param fill: 填充元素的值
:return:
"""
m = []
for i in range(I):
m.append([fill] * J)
return m
def randomizeMatrix(matrix, a, b):
"""
随机初始化矩阵
:param matrix:
:param a:
:param b:
"""
for i in range(len(matrix)):
for j in range(len(matrix[0])):
matrix[i][j] = random.uniform(a, b)
def sigmoid(x):
"""
sigmoid 函数,1/(1+e^-x)
:param x:
:return:
"""
return 1.0 / (1.0 + math.exp(-x))
def dsigmoid(y):
"""
sigmoid 函数的导数
:param y:
:return:
"""
return y * (1 - y)
class NN:
def __init__(self, ni, nh, no):
# number of input, hidden, and output nodes
"""
构造神经网络
:param ni:输入单元数量
:param nh:隐藏单元数量
:param no:输出单元数量
"""
self.ni = ni + 1 # +1 是为了偏置节点
self.nh = nh
self.no = no
# 激活值(输出值)
self.ai = [1.0] * self.ni
self.ah = [1.0] * self.nh
self.ao = [1.0] * self.no
# 权重矩阵
self.wi = makeMatrix(self.ni, self.nh) # 输入层到隐藏层
self.wo = makeMatrix(self.nh, self.no) # 隐藏层到输出层
# 将权重矩阵随机化
randomizeMatrix(self.wi, -0.2, 0.2)
randomizeMatrix(self.wo, -2.0, 2.0)
# 权重矩阵的上次梯度
self.ci = makeMatrix(self.ni, self.nh)
self.co = makeMatrix(self.nh, self.no)
def runNN(self, inputs):
"""
前向传播进行分类
:param inputs:输入
:return:类别
"""
if len(inputs) != self.ni - 1:
print 'incorrect number of inputs'
for i in range(self.ni - 1):
self.ai[i] = inputs[i]
for j in range(self.nh):
sum = 0.0
for i in range(self.ni):
sum += ( self.ai[i] * self.wi[i][j] )
self.ah[j] = sigmoid(sum)
for k in range(self.no):
sum = 0.0
for j in range(self.nh):
sum += ( self.ah[j] * self.wo[j][k] )
self.ao[k] = sigmoid(sum)
return self.ao
def backPropagate(self, targets, N, M):
"""
后向传播算法
:param targets: 实例的类别
:param N: 本次学习率
:param M: 上次学习率
:return: 最终的误差平方和的一半
"""
# http://www.youtube.com/watch?v=aVId8KMsdUU&feature=BFa&list=LLldMCkmXl4j9_v0HeKdNcRA
# 计算输出层 deltas
# dE/dw[j][k] = (t[k] - ao[k]) * s'( SUM( w[j][k]*ah[j] ) ) * ah[j]
output_deltas = [0.0] * self.no
for k in range(self.no):
error = targets[k] - self.ao[k]
output_deltas[k] = error * dsigmoid(self.ao[k])
# 更新输出层权值
for j in range(self.nh):
for k in range(self.no):
# output_deltas[k] * self.ah[j] 才是 dError/dweight[j][k]
change = output_deltas[k] * self.ah[j]
self.wo[j][k] += N * change + M * self.co[j][k]
self.co[j][k] = change
# 计算隐藏层 deltas
hidden_deltas = [0.0] * self.nh
for j in range(self.nh):
error = 0.0
for k in range(self.no):
error += output_deltas[k] * self.wo[j][k]
hidden_deltas[j] = error * dsigmoid(self.ah[j])
# 更新输入层权值
for i in range(self.ni):
for j in range(self.nh):
change = hidden_deltas[j] * self.ai[i]
# print 'activation',self.ai[i],'synapse',i,j,'change',change
self.wi[i][j] += N * change + M * self.ci[i][j]
self.ci[i][j] = change
# 计算误差平方和
# 1/2 是为了好看,**2 是平方
error = 0.0
for k in range(len(targets)):
error = 0.5 * (targets[k] - self.ao[k]) ** 2
return error
def weights(self):
"""
打印权值矩阵
"""
print 'Input weights:'
for i in range(self.ni):
print self.wi[i]
print
print 'Output weights:'
for j in range(self.nh):
print self.wo[j]
print ''
def test(self, patterns):
"""
测试
:param patterns:测试数据
"""
for p in patterns:
inputs = p[0]
print 'Inputs:', p[0], '-->', self.runNN(inputs), '\tTarget', p[1]
def train(self, patterns, max_iterations=1000, N=0.5, M=0.1):
"""
训练
:param patterns:训练集
:param max_iterations:最大迭代次数
:param N:本次学习率
:param M:上次学习率
"""
for i in range(max_iterations):
for p in patterns:
inputs = p[0]
targets = p[1]
self.runNN(inputs)
error = self.backPropagate(targets, N, M)
if i % 50 == 0:
print 'Combined error', error
self.test(patterns)
def main():
pat = [
[[0, 0], [1]],
[[0, 1], [1]],
[[1, 0], [1]],
[[1, 1], [0]]
]
myNN = NN(2, 2, 1)
myNN.train(pat)
if __name__ == "__main__":
main()