-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumpy-backward-prop.py
223 lines (195 loc) · 8.79 KB
/
numpy-backward-prop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/env python
# encoding: utf-8
"""
@author: HuRuiFeng
@file: 7.9-backward-prop.py
@time: 2020/2/24 17:32
@desc: 7.9 反向传播算法实战的代码
"""
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
plt.rcParams['font.size'] = 16
plt.rcParams['font.family'] = ['STKaiti']
plt.rcParams['axes.unicode_minus'] = False
def load_dataset():
# 采样点数
N_SAMPLES = 2000
# 测试数量比率
TEST_SIZE = 0.3
# 利用工具函数直接生成数据集
X, y = make_moons(n_samples=N_SAMPLES, noise=0.2, random_state=100)
# 将 2000 个点按着 7:3 分割为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TEST_SIZE, random_state=42)
return X, y, X_train, X_test, y_train, y_test
def make_plot(X, y, plot_name, XX=None, YY=None, preds=None, dark=False):
# 绘制数据集的分布, X 为 2D 坐标, y 为数据点的标签
if (dark):
plt.style.use('dark_background')
else:
sns.set_style("whitegrid")
plt.figure(figsize=(16, 12))
axes = plt.gca()
axes.set(xlabel="$x_1$", ylabel="$x_2$")
plt.title(plot_name, fontsize=30)
plt.subplots_adjust(left=0.20)
plt.subplots_adjust(right=0.80)
if XX is not None and YY is not None and preds is not None:
plt.contourf(XX, YY, preds.reshape(XX.shape), 25, alpha=1, cmap=plt.cm.Spectral)
plt.contour(XX, YY, preds.reshape(XX.shape), levels=[.5], cmap="Greys", vmin=0, vmax=.6)
# 绘制散点图,根据标签区分颜色
plt.scatter(X[:, 0], X[:, 1], c=y.ravel(), s=40, cmap=plt.cm.Spectral, edgecolors='none')
plt.savefig('数据集分布.svg')
plt.close()
class Layer:
# 全连接网络层
def __init__(self, n_input, n_neurons, activation=None, weights=None,
bias=None):
"""
:param int n_input: 输入节点数
:param int n_neurons: 输出节点数
:param str activation: 激活函数类型
:param weights: 权值张量,默认类内部生成
:param bias: 偏置,默认类内部生成
"""
# 通过正态分布初始化网络权值,初始化非常重要,不合适的初始化将导致网络不收敛
self.weights = weights if weights is not None else np.random.randn(n_input, n_neurons) * np.sqrt(1 / n_neurons)
self.bias = bias if bias is not None else np.random.rand(n_neurons) * 0.1
self.activation = activation # 激活函数类型,如’sigmoid’
self.last_activation = None # 激活函数的输出值o
self.error = None # 用于计算当前层的delta 变量的中间变量
self.delta = None # 记录当前层的delta 变量,用于计算梯度
# 网络层的前向传播函数实现如下,其中last_activation 变量用于保存当前层的输出值:
def activate(self, x):
# 前向传播函数
r = np.dot(x, self.weights) + self.bias # X@W+b
# 通过激活函数,得到全连接层的输出o
self.last_activation = self._apply_activation(r)
return self.last_activation
# 上述代码中的self._apply_activation 函数实现了不同类型的激活函数的前向计算过程,
# 尽管此处我们只使用Sigmoid 激活函数一种。代码如下:
def _apply_activation(self, r):
# 计算激活函数的输出
if self.activation is None:
return r # 无激活函数,直接返回
# ReLU 激活函数
elif self.activation == 'relu':
return np.maximum(r, 0)
# tanh 激活函数
elif self.activation == 'tanh':
return np.tanh(r)
# sigmoid 激活函数
elif self.activation == 'sigmoid':
return 1 / (1 + np.exp(-r))
return r
# 针对于不同类型的激活函数,它们的导数计算实现如下:
def apply_activation_derivative(self, r):
# 计算激活函数的导数
# 无激活函数,导数为1
if self.activation is None:
return np.ones_like(r)
# ReLU 函数的导数实现
elif self.activation == 'relu':
grad = np.array(r, copy=True)
grad[r > 0] = 1.
grad[r <= 0] = 0.
return grad
# tanh 函数的导数实现
elif self.activation == 'tanh':
return 1 - r ** 2
# Sigmoid 函数的导数实现
elif self.activation == 'sigmoid':
return r * (1 - r)
return r
# 神经网络模型
class NeuralNetwork:
def __init__(self):
self._layers = [] # 网络层对象列表
def add_layer(self, layer):
# 追加网络层
self._layers.append(layer)
# 网络的前向传播只需要循环调各个网络层对象的前向计算函数即可,代码如下:
# 前向传播
def feed_forward(self, X):
for layer in self._layers:
# 依次通过各个网络层
X = layer.activate(X)
return X
def backpropagation(self, X, y, learning_rate):
# 反向传播算法实现
# 前向计算,得到输出值
output = self.feed_forward(X)
for i in reversed(range(len(self._layers))): # 反向循环
layer = self._layers[i] # 得到当前层对象
# 如果是输出层
if layer == self._layers[-1]: # 对于输出层
layer.error = y - output # 计算2 分类任务的均方差的导数
# 关键步骤:计算最后一层的delta,参考输出层的梯度公式
layer.delta = layer.error * layer.apply_activation_derivative(output)
else: # 如果是隐藏层
next_layer = self._layers[i + 1] # 得到下一层对象
layer.error = np.dot(next_layer.weights, next_layer.delta)
# 关键步骤:计算隐藏层的delta,参考隐藏层的梯度公式
layer.delta = layer.error * layer.apply_activation_derivative(layer.last_activation)
# 循环更新权值
for i in range(len(self._layers)):
layer = self._layers[i]
# o_i 为上一网络层的输出
o_i = np.atleast_2d(X if i == 0 else self._layers[i - 1].last_activation)
# 梯度下降算法,delta 是公式中的负数,故这里用加号
layer.weights += layer.delta * o_i.T * learning_rate
def train(self, X_train, X_test, y_train, y_test, learning_rate, max_epochs):
# 网络训练函数
# one-hot 编码
y_onehot = np.zeros((y_train.shape[0], 2))
y_onehot[np.arange(y_train.shape[0]), y_train] = 1
# 将One-hot 编码后的真实标签与网络的输出计算均方误差,并调用反向传播函数更新网络参数,循环迭代训练集1000 遍即可
mses = []
accuracys = []
for i in range(max_epochs + 1): # 训练1000 个epoch
for j in range(len(X_train)): # 一次训练一个样本
self.backpropagation(X_train[j], y_onehot[j], learning_rate)
if i % 10 == 0:
# 打印出MSE Loss
mse = np.mean(np.square(y_onehot - self.feed_forward(X_train)))
mses.append(mse)
accuracy = self.accuracy(self.predict(X_test), y_test.flatten())
accuracys.append(accuracy)
print('Epoch: #%s, MSE: %f' % (i, float(mse)))
# 统计并打印准确率
print('Accuracy: %.2f%%' % (accuracy * 100))
return mses, accuracys
def predict(self, X):
return self.feed_forward(X)
def accuracy(self, X, y):
return np.sum(np.equal(np.argmax(X, axis=1), y)) / y.shape[0]
def main():
X, y, X_train, X_test, y_train, y_test = load_dataset()
# 调用 make_plot 函数绘制数据的分布,其中 X 为 2D 坐标, y 为标签
make_plot(X, y, "Classification Dataset Visualization ")
plt.show()
nn = NeuralNetwork() # 实例化网络类
nn.add_layer(Layer(2, 25, 'sigmoid')) # 隐藏层 1, 2=>25
nn.add_layer(Layer(25, 50, 'sigmoid')) # 隐藏层 2, 25=>50
nn.add_layer(Layer(50, 25, 'sigmoid')) # 隐藏层 3, 50=>25
nn.add_layer(Layer(25, 2, 'sigmoid')) # 输出层, 25=>2
mses, accuracys = nn.train(X_train, X_test, y_train, y_test, 0.01, 1000)
x = [i for i in range(0, 101, 10)]
# 绘制MES曲线
plt.title("MES Loss")
plt.plot(x, mses[:11], color='blue')
plt.xlabel('Epoch')
plt.ylabel('MSE')
plt.savefig('训练误差曲线.svg')
plt.close()
# 绘制Accuracy曲线
plt.title("Accuracy")
plt.plot(x, accuracys[:11], color='blue')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.savefig('网络测试准确率.svg')
plt.close()
if __name__ == '__main__':
main()