-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
124 lines (107 loc) · 3.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import collections
import warnings
import numpy as np
import torch
import hw_asr.loss as module_loss
import hw_asr.metric as module_metric
import hw_asr.model as module_arch
from hw_asr.trainer import Trainer
from hw_asr.utils import prepare_device
from hw_asr.utils.object_loading import get_dataloaders
from hw_asr.utils.parse_config import ConfigParser
warnings.filterwarnings("ignore", category=UserWarning)
# fix random seeds for reproducibility
SEED = 123
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def main(config):
logger = config.get_logger("train")
# text_encoder
text_encoder = config.get_text_encoder()
# setup data_loader instances
dataloaders = get_dataloaders(config, text_encoder)
print(dataloaders.keys())
print('data train size:', len(dataloaders['train']))
# build model architecture, then print to console
model = config.init_obj(config["arch"], module_arch, n_class=len(text_encoder))
logger.info(model)
# prepare for (multi-device) GPU training
device, device_ids = prepare_device(config["n_gpu"])
model = model.to(device)
if len(device_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
# get function handles of loss and metrics
loss_module = config.init_obj(config["loss"], module_loss).to(device)
metrics = [
config.init_obj(metric_dict, module_metric, text_encoder=text_encoder)
for metric_dict in config["metrics"]
]
# build optimizer, learning rate scheduler. delete every line containing lr_scheduler for
# disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init_obj(config["optimizer"], torch.optim, trainable_params)
lr_scheduler = config.init_obj(config["lr_scheduler"], torch.optim.lr_scheduler, optimizer)
trainer = Trainer(
model,
loss_module,
metrics,
optimizer,
lr_scheduler,
text_encoder=text_encoder,
config=config,
device=device,
dataloaders=dataloaders,
lr_scheduler=lr_scheduler,
len_epoch=config["trainer"].get("len_epoch", None)
)
trainer.train()
if __name__ == "__main__":
args = argparse.ArgumentParser(description="PyTorch Template")
args.add_argument(
"-c",
"--config",
default=None,
type=str,
help="config file path (default: None)",
)
args.add_argument(
"-r",
"--resume",
default=None,
type=str,
help="path to latest checkpoint (default: None)",
)
args.add_argument(
"-d",
"--device",
default=None,
type=str,
help="indices of GPUs to enable (default: all)",
)
args.add_argument(
"-wk",
"--wandb_key",
default=None,
type=str,
help="Wandb API key",
)
args.add_argument(
"-p",
"--pretrained",
default=None,
type=str,
help="path to pretrained model checkpoint",
)
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple("CustomArgs", "flags type target")
options = [
CustomArgs(["--lr", "--learning_rate"], type=float, target="optimizer;args;lr"),
CustomArgs(
["--bs", "--batch_size"], type=int, target="data_loader;args;batch_size"
),
]
config = ConfigParser.from_args(args, options)
main(config)