-
Notifications
You must be signed in to change notification settings - Fork 9
/
facial_landmarks.py
37 lines (29 loc) · 1.06 KB
/
facial_landmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from imutils import face_utils
import numpy as np
import argparse
import imutils
import dlib
import cv2
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required = True,
help = "path to facial landmark predictor")
ap.add_argument("-i", "--image", required = True,
help = "path to input image")
args = vars(ap.parse_args())
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
image = cv2.imread(args["image"])
image = imutils.resize(image, width = 500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 1)
for (i, rect) in enumerate(rects):
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
(x, y, w, h) = face_utils.rect_to_bb(rect)
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(image, "Face #{}".format(i+1), (x-10, y-10),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 255, 0), 2)
for (x, y) in shape:
cv2.circle(image, (x, y), 1, (0, 0, 255), -1)
cv2.imshow("Output", image)
cv2.waitKey(0)