-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_distillation.py
323 lines (252 loc) · 12.9 KB
/
train_distillation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import os, argparse
import time, sys, math, random
import tensorboard_logger as tb_logger
import torch
import torch.optim as optim
import torch.nn as nn
import torch.backends.cudnn as cudnn
import numpy as np
from models import model_dict, model_pool
from models.contrast import ContrastResNet
from models.util import create_model, get_teacher_name
from utils import adjust_learning_rate, accuracy, AverageMeter, warmup_learning_rate, set_seed
from dataset.loaders import get_train_loaders
from dataset.transform_cfg import transforms_options, transforms_list
from losses import DistillKL, contrast_distill
from tqdm import tqdm
from dataset.transform_cfg import transforms_list
from copy import deepcopy
from dataset.utils import AUG_TYPES
def parse_option():
parser = argparse.ArgumentParser('argument for training')
# general
parser.add_argument('--eval_freq', type=int, default=100, help='meta-eval frequency')
parser.add_argument('--save_freq', type=int, default=500, help='save frequency')
parser.add_argument('--batch_size', type=int, default=64, help='batch_size')
parser.add_argument('--num_workers', type=int, default=16, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=200, help='number of training epochs')
parser.add_argument('--tb_freq', type=int, default=100, help='tb frequency')
parser.add_argument('--use_tb', default=False, action='store_true')
parser.add_argument('--syncBN', action='store_true', help='using synchronized batch normalization')
parser.add_argument('--trial', type=str, default=None, help='the experiment id')
parser.add_argument('--seed', type=int, default=31)
# optimization
parser.add_argument('--learning_rate', type=float, default=5e-2, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default=None, help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--cosine', action='store_true', help='using cosine annealing')
# dataset and model
parser.add_argument('--model_s', type=str, default='resnet12', choices=model_pool)
parser.add_argument('--model_t', type=str, default=None, choices=model_pool)
parser.add_argument('--dataset', type=str, default='miniImageNet', choices=['miniImageNet', 'tieredImageNet', 'CIFAR-FS', 'FC100', 'cross'])
parser.add_argument('--transform', type=str, default='A', choices=transforms_list)
parser.add_argument('--use_trainval', action='store_true', help='use trainval set')
parser.add_argument('--aug_type', type=str, default='simclr', choices=AUG_TYPES)
# path to teacher model
parser.add_argument('--model_path_t', type=str, default=None, help='teacher model snapshot')
# weights of the total loss
parser.add_argument('--kd_T', type=float, default=4, help='temperature for KD distillation')
parser.add_argument('--lambda_cls', default=0., type=float, help='weight for classification')
parser.add_argument('--lambda_KD', default=0., type=float, help='weight balance for KL div loss')
parser.add_argument('--lambda_contrast_g', default=0., type=float, help='weight balance for contrastive loss')
parser.add_argument('--lambda_contrast_s', default=0., type=float, help='weight balance for contrastive loss')
# specify folder
parser.add_argument('--model_path', type=str, default='', help='path to save model')
parser.add_argument('--tb_path', type=str, default='', help='path to tensorboard')
parser.add_argument('--data_root', type=str, default='', help='path to data root')
parser.add_argument('--model_name', type=str, default=None, help='model name')
parser.add_argument('--double_transform', action='store_true')
# setting for meta-learning
parser.add_argument('--n_test_runs', type=int, default=600, metavar='N', help='Number of test runs')
parser.add_argument('--n_ways', type=int, default=5, metavar='N', help='Number of classes for doing each classification run')
parser.add_argument('--n_shots', type=int, default=1, metavar='N', help='Number of shots in test')
parser.add_argument('--n_queries', type=int, default=15, metavar='N', help='Number of query in test')
parser.add_argument('--n_aug_support_samples', default=5, type=int, help='The number of augmented samples for each meta test sample')
parser.add_argument('--test_batch_size', type=int, default=1, metavar='test_batch_size', help='Size of test batch)')
opt = parser.parse_args()
if opt.dataset == 'CIFAR-FS' or opt.dataset == 'FC100':
opt.transform = 'D'
if opt.model_t is None:
opt.model_t = opt.model_s
# set the path according to the environment
if not opt.model_path:
opt.model_path = './models_distilled'
if not opt.tb_path and opt.use_tb:
opt.tb_path = './tensorboard'
if not opt.data_root:
opt.data_root = './data/{}'.format(opt.dataset)
else:
opt.data_root = '{}/{}'.format(opt.data_root, opt.dataset)
if opt.dataset == "cross":
opt.data_root = opt.data_root.replace("cross", "miniImageNet")
opt.data_aug = True
# learning rate decay
if opt.lr_decay_epochs is None:
decay_steps = opt.epochs // 10
opt.lr_decay_epochs = [opt.epochs - 3*decay_steps, opt.epochs - 2*decay_steps, opt.epochs - decay_steps]
else:
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
# set model name
if opt.model_name is None:
if opt.use_trainval:
opt.trial = opt.trial + '_trainval'
opt.model_name = 'S:{}_T:{}_{}_trans_{}'.format(opt.model_s, opt.model_t, opt.dataset, opt.transform)
if opt.cosine:
opt.model_name = '{}_cosine'.format(opt.model_name)
if opt.trial is not None:
opt.model_name = '{}_{}'.format(opt.model_name, opt.trial)
if opt.use_tb:
opt.tb_folder = os.path.join(opt.tb_path, opt.model_name)
if not os.path.isdir(opt.tb_folder):
os.makedirs(opt.tb_folder)
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
opt.n_gpu = torch.cuda.device_count()
return opt
def load_teacher(model_path, n_cls):
"""load the teacher model"""
print('==> loading teacher model')
ckpt = torch.load(model_path)
opt = ckpt['opt']
model = ContrastResNet(opt, n_cls)
model.load_state_dict(ckpt['model'])
print('==> done')
return model, opt
def main():
opt = parse_option()
set_seed(opt.seed)
# tensorboard logger
if opt.use_tb:
logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2)
# dataloader
train_partition = 'trainval' if opt.use_trainval else 'train'
train_loader, val_loader, n_cls = get_train_loaders(opt, train_partition)
opt.n_cls = n_cls
# teacher
opt.model = opt.model_t
model_t, ckpt_opt = load_teacher(opt.model_path_t, n_cls)
ckpt_opt.data_root = opt.data_root
assert ckpt_opt.dataset == opt.dataset, "The teacher is trained on a different dataset."
# student
opt.model = opt.model_s
model_s = ContrastResNet(ckpt_opt, n_cls)
# losses
criterion_cls = nn.CrossEntropyLoss()
criterion_contrast = contrast_distill
criterion_div = DistillKL(opt.kd_T)
# optimizer
params = [{'params': model_s.parameters()}]
optimizer = optim.SGD(params, lr=opt.learning_rate, momentum=opt.momentum, weight_decay=opt.weight_decay)
# Set cuda params
if opt.syncBN:
model_t = apex.parallel.convert_syncbn_model(model_t)
model_s = apex.parallel.convert_syncbn_model(model_s)
if torch.cuda.is_available():
if opt.n_gpu > 1:
model_t = nn.DataParallel(model_t)
model_s = nn.DataParallel(model_s)
model_t = model_t.cuda()
model_s = model_s.cuda()
criterion_cls = criterion_cls.cuda()
criterion_div = criterion_div.cuda()
cudnn.benchmark = True
criterion_list = [criterion_cls, criterion_contrast, criterion_div]
# set cosine annealing scheduler
if opt.cosine:
eta_min = opt.learning_rate * (opt.lr_decay_rate ** 3)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, opt.epochs, eta_min, -1)
# distillation routine
for epoch in range(1, opt.epochs + 1):
if opt.cosine:
scheduler.step()
else:
adjust_learning_rate(epoch, opt, optimizer)
time1 = time.time()
train_loss = train(epoch, train_loader, model_t, model_s, criterion_list, optimizer, opt, ckpt_opt)
time2 = time.time()
print('epoch: {}, total time: {:.2f}, train loss: {:.3f}'.format(epoch, time2 - time1, train_loss))
if opt.use_tb and (epoch % opt.tb_freq) == 0:
logger.log_value('train_loss', train_loss, epoch)
# regular saving
if epoch % opt.save_freq == 0:
print('==> Saving...')
state = {
'opt': ckpt_opt,
'model': model_s.state_dict() if opt.n_gpu <= 1 else model_s.module.state_dict(),
}
save_file = os.path.join(opt.save_folder, 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch))
torch.save(state, save_file)
# save the last model
state = {
'opt': ckpt_opt,
'model': model_s.state_dict() if opt.n_gpu <= 1 else model_s.module.state_dict(),
}
save_file = os.path.join(opt.save_folder, '{}_student_last.pth'.format(opt.model_s))
torch.save(state, save_file)
def train(epoch, train_loader, model_t, model_s, criterion_list, optimizer, opt, ckpt_opt):
"""One epoch training"""
model_s.train()
model_t.eval()
criterion_cls, criterion_contrast, criterion_div = criterion_list
batch_time, data_time = AverageMeter(), AverageMeter()
losses, loss_kd, loss_cont = AverageMeter(), AverageMeter(), AverageMeter()
end = time.time()
tbar = tqdm(train_loader, ncols=130)
for idx, (input, target, _) in enumerate(tbar):
# fetch data
data_time.update(time.time() - end)
# send to gpu
if torch.cuda.is_available():
target = target.cuda(non_blocking=True)
if opt.double_transform:
input = torch.cat([input[0].cuda(non_blocking=True).float(),
input[1].cuda(non_blocking=True).float()], dim=0)
else:
input = input.cuda(non_blocking=True).float()
bz = target.size(0)
# ===================forward=====================
logits, spatial_f, global_f, avg_pool_feat = model_s(input)
with torch.no_grad():
logits_t, spatial_f_t, _, avg_pool_feat_t = model_t(input)
logits_t, avg_pool_feat_t = logits_t.detach(), avg_pool_feat_t.detach()
spatial_f_t = spatial_f_t.detach()
# ===================losses================
# losses - KL & CE
loss_cls = criterion_cls(logits[:bz], target)
loss_div = criterion_div(logits, logits_t)
# losses - contrastive distillation - global
loss_contrast_global = criterion_contrast(avg_pool_feat, avg_pool_feat_t)
# losses - contrastive distillation - spatial
B, C, H, W = spatial_f_t.size()
spatial_f = spatial_f.view(B, C, H*W).permute(0, 2, 1).contiguous()
spatial_f = spatial_f.view(B*H*W, C)
spatial_f_t = spatial_f_t.view(B, C, H*W).permute(0, 2, 1).contiguous()
spatial_f_t = spatial_f_t.view(B*H*W, C)
loss_contrast_spatial = criterion_contrast(spatial_f, spatial_f_t)
# total loss
loss_contrast = opt.lambda_contrast_g * loss_contrast_global + opt.lambda_contrast_s * loss_contrast_spatial
loss = opt.lambda_cls * loss_cls + opt.lambda_KD * loss_div + loss_contrast
# ===================update losses================
losses.update(loss.item())
loss_kd.update(loss_div.item())
loss_cont.update(loss_contrast.item())
# ===================backward=====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# ===================meters=====================
batch_time.update(time.time() - end)
end = time.time()
# print info
tbar.set_description('Epoch: [{0}] Loss {losses.avg:.3f} - L kd {loss_kd.avg:.3f} L cont {loss_cont.avg:.3f}'
.format(epoch, idx, len(train_loader), batch_time=batch_time, data_time=data_time,
losses=losses,loss_kd=loss_kd, loss_cont=loss_cont))
return losses.avg
if __name__ == '__main__':
main()