forked from open-mmlab/mmocr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfcenet_r50_fpn_1500e_icdar2015.py
137 lines (130 loc) · 3.91 KB
/
fcenet_r50_fpn_1500e_icdar2015.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
fourier_degree = 5
model = dict(
type='FCENet',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(1, 2, 3),
frozen_stages=-1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=False,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[512, 1024, 2048],
out_channels=256,
add_extra_convs=True,
extra_convs_on_inputs=False, # use P5
num_outs=3,
relu_before_extra_convs=True,
act_cfg=None),
bbox_head=dict(
type='FCEHead',
in_channels=256,
scales=(8, 16, 32),
loss=dict(type='FCELoss'),
alpha=1.2,
beta=1.0,
text_repr_type='quad',
fourier_degree=fourier_degree,
))
train_cfg = None
test_cfg = None
dataset_type = 'IcdarDataset'
data_root = 'data/icdar2015/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='LoadTextAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(
type='ColorJitter',
brightness=32.0 / 255,
saturation=0.5,
contrast=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='RandomScaling', size=800, scale=(3. / 4, 5. / 2)),
dict(
type='RandomCropFlip', crop_ratio=0.5, iter_num=1, min_area_ratio=0.2),
dict(
type='RandomCropPolyInstances',
instance_key='gt_masks',
crop_ratio=0.8,
min_side_ratio=0.3),
dict(
type='RandomRotatePolyInstances',
rotate_ratio=0.5,
max_angle=30,
pad_with_fixed_color=False),
dict(type='SquareResizePad', target_size=800, pad_ratio=0.6),
dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'),
dict(type='Pad', size_divisor=32),
dict(
type='FCENetTargets',
fourier_degree=fourier_degree,
level_proportion_range=((0, 0.4), (0.3, 0.7), (0.6, 1.0))),
dict(
type='CustomFormatBundle',
keys=['p3_maps', 'p4_maps', 'p5_maps'],
visualize=dict(flag=False, boundary_key=None)),
dict(type='Collect', keys=['img', 'p3_maps', 'p4_maps', 'p5_maps'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2260, 2260),
flip=False,
transforms=[
dict(type='Resize', img_scale=(1280, 800), keep_ratio=True),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type=dataset_type,
ann_file=data_root + '/instances_training.json',
img_prefix=data_root + '/imgs',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + '/instances_test.json',
img_prefix=data_root + '/imgs',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + '/instances_test.json',
img_prefix=data_root + '/imgs',
pipeline=test_pipeline))
evaluation = dict(interval=5, metric='hmean-iou')
# optimizer
optimizer = dict(type='SGD', lr=1e-3, momentum=0.90, weight_decay=5e-4)
optimizer_config = dict(grad_clip=None)
lr_config = dict(policy='poly', power=0.9, min_lr=1e-7, by_epoch=True)
total_epochs = 1500
checkpoint_config = dict(interval=5)
# yapf:disable
log_config = dict(
interval=20,
hooks=[
dict(type='TextLoggerHook')
])
# yapf:enable
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]