-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
96 lines (72 loc) · 2.51 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import gym
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torchvision.transforms as T
# input extraction
# define the resize transfomation
resize = T.Compose([T.ToPILImage(),
T.Resize((84,84), interpolation=Image.CUBIC),
T.Grayscale(num_output_channels=1),
T.ToTensor()])
# get a resized screen
def get_screen(env):
'''
return a resized screen (tensor) in (BCHW)
'''
# Returned screen is size (1000,1000,3), need to transpose to
# torch order (CHW)
screen = env.render(mode='rgb_array').transpose((2,0,1))
# print(type(screen), screen.shape)
screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
screen = torch.from_numpy(screen)
# Resize, and add a batch dimension (HW)
screen = resize(screen).squeeze(0)
return screen
# show the screen
def show_screen(screen):
plt.figure()
plt.imshow(screen.cpu().numpy(),
interpolation='none')
plt.title('Example extracted screen')
plt.show()
class SumTree(object):
position = 0
def __init__(self, capacity):
self.length = 0
self.capacity = capacity
self.tree = np.zeros( 2 * capacity - 1 )
self.data = np.zeros( capacity, dtype=object)
def _propagate(self, idx, change):
parent = (idx - 1) // 2
self.tree[parent] += change
if parent != 0:
self._propagate(parent, change)
def update(self, idx, priority):
change = priority - self.tree[idx]
self.tree[idx] = priority
self._propagate(idx, change)
def add(self, priority, data):
idx = self.position + self.capacity - 1
self.data[self.position] = data
self.update(idx, priority)
self.position = (self.position + 1) % self.capacity
self.length = min(self.length+1, self.capacity)
def _retrieve(self, idx, p): # retrieve p
left = 2 * idx + 1
right = left + 1
if left >= len(self.tree): # already get to the leaf
return idx
if p <= self.tree[left]:
return self._retrieve(left, p) # recursion
else:
return self._retrieve(right, p-self.tree[left])
def get_leaf(self, s):
idx = self._retrieve(0, s) # tree index
dataIdx = idx - self.capacity + 1 # data index
return (idx, self.tree[idx], self.data[dataIdx])
def total(self):
return self.tree[0]
def __len__(self):
return self.length