-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathcaptcha_qq.py
219 lines (193 loc) · 7.18 KB
/
captcha_qq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python
# encoding: utf-8
# -*- coding: utf-8 -*-
# @contact: [email protected]
# @software: PyCharm
# @time: 2019/4/25 16:39
# @author: Paulson●Wier
# @file: captcha_qq.py
# @desc:
import numpy as np
import random
import requests
from selenium.webdriver import ActionChains
import time
from selenium import webdriver
from PIL import Image
import os
from selenium.webdriver.support.ui import WebDriverWait
import cv2
class Login(object):
"""
腾讯防水墙滑动验证码破解
使用OpenCV库
成功率大概90%左右:在实际应用中,登录后可判断当前页面是否有登录成功才会出现的信息:比如用户名等。循环
https://open.captcha.qq.com/online.html
破解 腾讯滑动验证码
腾讯防水墙
python + seleniuum + cv2
"""
def __init__(self):
# 如果是实际应用中,可在此处账号和密码
self.url = "https://open.captcha.qq.com/online.html"
self.driver = webdriver.Chrome()
@staticmethod
def show(name):
cv2.imshow('Show', name)
cv2.waitKey(0)
cv2.destroyAllWindows()
@staticmethod
def webdriverwait_send_keys(dri, element, value):
"""
显示等待输入
:param dri: driver
:param element:
:param value:
:return:
"""
WebDriverWait(dri, 10, 5).until(lambda dr: element).send_keys(value)
@staticmethod
def webdriverwait_click(dri, element):
"""
显示等待 click
:param dri: driver
:param element:
:return:
"""
WebDriverWait(dri, 10, 5).until(lambda dr: element).click()
@staticmethod
def get_postion(chunk, canves):
"""
判断缺口位置
:param chunk: 缺口图片是原图
:param canves:
:return: 位置 x, y
"""
otemp = chunk
oblk = canves
target = cv2.imread(otemp, 0)
template = cv2.imread(oblk, 0)
# w, h = target.shape[::-1]
temp = 'temp.jpg'
targ = 'targ.jpg'
cv2.imwrite(temp, template)
cv2.imwrite(targ, target)
target = cv2.imread(targ)
target = cv2.cvtColor(target, cv2.COLOR_BGR2GRAY)
target = abs(255 - target)
cv2.imwrite(targ, target)
target = cv2.imread(targ)
template = cv2.imread(temp)
result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)
x, y = np.unravel_index(result.argmax(), result.shape)
return x, y
# # 展示圈出来的区域
# cv2.rectangle(template, (y, x), (y + w, x + h), (7, 249, 151), 2)
# cv2.imwrite("yuantu.jpg", template)
# show(template)
@staticmethod
def get_track(distance):
"""
模拟轨迹 假装是人在操作
:param distance:
:return:
"""
# 初速度
v = 0
# 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
t = 0.2
# 位移/轨迹列表,列表内的一个元素代表0.2s的位移
tracks = []
# 当前的位移
current = 0
# 到达mid值开始减速
mid = distance * 7 / 8
distance += 10 # 先滑过一点,最后再反着滑动回来
# a = random.randint(1,3)
while current < distance:
if current < mid:
# 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
a = random.randint(2, 4) # 加速运动
else:
a = -random.randint(3, 5) # 减速运动
# 初速度
v0 = v
# 0.2秒时间内的位移
s = v0 * t + 0.5 * a * (t ** 2)
# 当前的位置
current += s
# 添加到轨迹列表
tracks.append(round(s))
# 速度已经达到v,该速度作为下次的初速度
v = v0 + a * t
# 反着滑动到大概准确位置
for i in range(4):
tracks.append(-random.randint(2, 3))
for i in range(4):
tracks.append(-random.randint(1, 3))
return tracks
@staticmethod
def urllib_download(imgurl, imgsavepath):
"""
下载图片
:param imgurl: 图片url
:param imgsavepath: 存放地址
:return:
"""
from urllib.request import urlretrieve
urlretrieve(imgurl, imgsavepath)
def after_quit(self):
"""
关闭浏览器
:return:
"""
self.driver.quit()
def login_main(self):
# ssl._create_default_https_context = ssl._create_unverified_context
driver = self.driver
driver.maximize_window()
driver.get(self.url)
click_keyi_username = driver.find_element_by_xpath("//div[@class='wp-onb-tit']/a[text()='可疑用户']")
self.webdriverwait_click(driver, click_keyi_username)
login_button = driver.find_element_by_id('code')
self.webdriverwait_click(driver, login_button)
time.sleep(1)
driver.switch_to.frame(driver.find_element_by_id('tcaptcha_iframe')) # switch 到 滑块frame
time.sleep(0.5)
bk_block = driver.find_element_by_xpath('//img[@id="slideBg"]') # 大图
web_image_width = bk_block.size
web_image_width = web_image_width['width']
bk_block_x = bk_block.location['x']
slide_block = driver.find_element_by_xpath('//img[@id="slideBlock"]') # 小滑块
slide_block_x = slide_block.location['x']
bk_block = driver.find_element_by_xpath('//img[@id="slideBg"]').get_attribute('src') # 大图 url
slide_block = driver.find_element_by_xpath('//img[@id="slideBlock"]').get_attribute('src') # 小滑块 图片url
slid_ing = driver.find_element_by_xpath('//div[@id="tcaptcha_drag_thumb"]') # 滑块
os.makedirs('./image/', exist_ok=True)
self.urllib_download(bk_block, './image/bkBlock.png')
self.urllib_download(slide_block, './image/slideBlock.png')
time.sleep(0.5)
img_bkblock = Image.open('./image/bkBlock.png')
real_width = img_bkblock.size[0]
width_scale = float(real_width) / float(web_image_width)
position = self.get_postion('./image/bkBlock.png', './image/slideBlock.png')
real_position = position[1] / width_scale
real_position = real_position - (slide_block_x - bk_block_x)
track_list = self.get_track(real_position + 4)
ActionChains(driver).click_and_hold(on_element=slid_ing).perform() # 点击鼠标左键,按住不放
time.sleep(0.2)
# print('第二步,拖动元素')
for track in track_list:
ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠标移动到距离当前位置(x,y)
time.sleep(0.002)
# ActionChains(driver).move_by_offset(xoffset=-random.randint(0, 1), yoffset=0).perform() # 微调,根据实际情况微调
time.sleep(1)
# print('第三步,释放鼠标')
ActionChains(driver).release(on_element=slid_ing).perform()
time.sleep(1)
print('登录成功')
self.after_quit()
if __name__ == '__main__':
phone = "****"
login = Login()
login.login_main()