forked from timoschick/pet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcli.py
282 lines (243 loc) · 17.7 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script can be used to train and evaluate either a regular supervised model or a PET/iPET model on
one of the supported tasks and datasets.
"""
import argparse
import os
from typing import Tuple
import torch
from pet.tasks import PROCESSORS, load_examples, UNLABELED_SET, TRAIN_SET, DEV_SET, TEST_SET, METRICS, DEFAULT_METRICS
from pet.utils import eq_div
from pet.wrapper import WRAPPER_TYPES, MODEL_CLASSES, SEQUENCE_CLASSIFIER_WRAPPER, WrapperConfig
import pet
import log
logger = log.get_logger('root')
def load_pet_configs(args) -> Tuple[WrapperConfig, pet.TrainConfig, pet.EvalConfig]:
"""
Load the model, training and evaluation configs for PET from the given command line arguments.
"""
model_cfg = WrapperConfig(model_type=args.model_type, model_name_or_path=args.model_name_or_path,
wrapper_type=args.wrapper_type, task_name=args.task_name, label_list=args.label_list,
max_seq_length=args.pet_max_seq_length, verbalizer_file=args.verbalizer_file,
cache_dir=args.cache_dir)
train_cfg = pet.TrainConfig(device=args.device, per_gpu_train_batch_size=args.pet_per_gpu_train_batch_size,
per_gpu_unlabeled_batch_size=args.pet_per_gpu_unlabeled_batch_size, n_gpu=args.n_gpu,
num_train_epochs=args.pet_num_train_epochs, max_steps=args.pet_max_steps,
gradient_accumulation_steps=args.pet_gradient_accumulation_steps,
weight_decay=args.weight_decay, learning_rate=args.learning_rate,
adam_epsilon=args.adam_epsilon, warmup_steps=args.warmup_steps,
max_grad_norm=args.max_grad_norm, lm_training=args.lm_training, alpha=args.alpha)
eval_cfg = pet.EvalConfig(device=args.device, n_gpu=args.n_gpu, metrics=args.metrics,
per_gpu_eval_batch_size=args.pet_per_gpu_eval_batch_size,
decoding_strategy=args.decoding_strategy, priming=args.priming)
return model_cfg, train_cfg, eval_cfg
def load_sequence_classifier_configs(args) -> Tuple[WrapperConfig, pet.TrainConfig, pet.EvalConfig]:
"""
Load the model, training and evaluation configs for a regular sequence classifier from the given command line
arguments. This classifier can either be used as a standalone model or as the final classifier for PET/iPET.
"""
model_cfg = WrapperConfig(model_type=args.model_type, model_name_or_path=args.model_name_or_path,
wrapper_type=SEQUENCE_CLASSIFIER_WRAPPER, task_name=args.task_name,
label_list=args.label_list, max_seq_length=args.sc_max_seq_length,
verbalizer_file=args.verbalizer_file, cache_dir=args.cache_dir)
train_cfg = pet.TrainConfig(device=args.device, per_gpu_train_batch_size=args.sc_per_gpu_train_batch_size,
per_gpu_unlabeled_batch_size=args.sc_per_gpu_unlabeled_batch_size, n_gpu=args.n_gpu,
num_train_epochs=args.sc_num_train_epochs, max_steps=args.sc_max_steps,
temperature=args.temperature,
gradient_accumulation_steps=args.sc_gradient_accumulation_steps,
weight_decay=args.weight_decay, learning_rate=args.learning_rate,
adam_epsilon=args.adam_epsilon, warmup_steps=args.warmup_steps,
max_grad_norm=args.max_grad_norm, use_logits=args.method != 'sequence_classifier')
eval_cfg = pet.EvalConfig(device=args.device, n_gpu=args.n_gpu, metrics=args.metrics,
per_gpu_eval_batch_size=args.sc_per_gpu_eval_batch_size)
return model_cfg, train_cfg, eval_cfg
def load_ipet_config(args) -> pet.IPetConfig:
"""
Load the iPET config from the given command line arguments.
"""
ipet_cfg = pet.IPetConfig(generations=args.ipet_generations, logits_percentage=args.ipet_logits_percentage,
scale_factor=args.ipet_scale_factor, n_most_likely=args.ipet_n_most_likely)
return ipet_cfg
def main():
parser = argparse.ArgumentParser(description="Command line interface for PET/iPET")
# Required parameters
parser.add_argument("--method", required=True, choices=['pet', 'ipet', 'sequence_classifier'],
help="The training method to use. Either regular sequence classification, PET or iPET.")
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the data files for the task.")
parser.add_argument("--model_type", default=None, type=str, required=True, choices=MODEL_CLASSES.keys(),
help="The type of the pretrained language model to use")
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to the pre-trained model or shortcut name")
parser.add_argument("--task_name", default=None, type=str, required=True, choices=PROCESSORS.keys(),
help="The name of the task to train/evaluate on")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written")
# PET-specific optional parameters
parser.add_argument("--wrapper_type", default="mlm", choices=WRAPPER_TYPES,
help="The wrapper type. Set this to 'mlm' for a masked language model like BERT or to 'plm' "
"for a permuted language model like XLNet (only for PET)")
parser.add_argument("--pattern_ids", default=[0], type=int, nargs='+',
help="The ids of the PVPs to be used (only for PET)")
parser.add_argument("--lm_training", action='store_true',
help="Whether to use language modeling as auxiliary task (only for PET)")
parser.add_argument("--alpha", default=0.9999, type=float,
help="Weighting term for the auxiliary language modeling task (only for PET)")
parser.add_argument("--temperature", default=2, type=float,
help="Temperature used for combining PVPs (only for PET)")
parser.add_argument("--verbalizer_file", default=None,
help="The path to a file to override default verbalizers (only for PET)")
parser.add_argument("--reduction", default='wmean', choices=['wmean', 'mean'],
help="Reduction strategy for merging predictions from multiple PET models. Select either "
"uniform weighting (mean) or weighting based on train set accuracy (wmean)")
parser.add_argument("--decoding_strategy", default='default', choices=['default', 'ltr', 'parallel'],
help="The decoding strategy for PET with multiple masks (only for PET)")
parser.add_argument("--no_distillation", action='store_true',
help="If set to true, no distillation is performed (only for PET)")
parser.add_argument("--pet_repetitions", default=3, type=int,
help="The number of times to repeat PET training and testing with different seeds.")
parser.add_argument("--pet_max_seq_length", default=256, type=int,
help="The maximum total input sequence length after tokenization for PET. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--pet_per_gpu_train_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for PET training.")
parser.add_argument("--pet_per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for PET evaluation.")
parser.add_argument("--pet_per_gpu_unlabeled_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for auxiliary language modeling examples in PET.")
parser.add_argument('--pet_gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass in PET.")
parser.add_argument("--pet_num_train_epochs", default=3, type=float,
help="Total number of training epochs to perform in PET.")
parser.add_argument("--pet_max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform in PET. Override num_train_epochs.")
# SequenceClassifier-specific optional parameters (also used for the final PET classifier)
parser.add_argument("--sc_repetitions", default=1, type=int,
help="The number of times to repeat seq. classifier training and testing with different seeds.")
parser.add_argument("--sc_max_seq_length", default=256, type=int,
help="The maximum total input sequence length after tokenization for sequence classification. "
"Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--sc_per_gpu_train_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for sequence classifier training.")
parser.add_argument("--sc_per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for sequence classifier evaluation.")
parser.add_argument("--sc_per_gpu_unlabeled_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for unlabeled examples used for distillation.")
parser.add_argument('--sc_gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass for "
"sequence classifier training.")
parser.add_argument("--sc_num_train_epochs", default=3, type=float,
help="Total number of training epochs to perform for sequence classifier training.")
parser.add_argument("--sc_max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform for sequence classifier training. "
"Override num_train_epochs.")
# iPET-specific optional parameters
parser.add_argument("--ipet_generations", default=3, type=int,
help="The number of generations to train (only for iPET)")
parser.add_argument("--ipet_logits_percentage", default=0.25, type=float,
help="The percentage of models to choose for annotating new training sets (only for iPET)")
parser.add_argument("--ipet_scale_factor", default=5, type=float,
help="The factor by which to increase the training set size per generation (only for iPET)")
parser.add_argument("--ipet_n_most_likely", default=-1, type=int,
help="If >0, in the first generation the n_most_likely examples per label are chosen even "
"if their predicted label is different (only for iPET)")
# Other optional parameters
parser.add_argument("--train_examples", default=-1, type=int,
help="The total number of train examples to use, where -1 equals all examples.")
parser.add_argument("--test_examples", default=-1, type=int,
help="The total number of test examples to use, where -1 equals all examples.")
parser.add_argument("--unlabeled_examples", default=-1, type=int,
help="The total number of unlabeled examples to use, where -1 equals all examples")
parser.add_argument("--split_examples_evenly", action='store_true',
help="If true, train examples are not chosen randomly, but split evenly across all labels.")
parser.add_argument("--cache_dir", default="", type=str,
help="Where to store the pre-trained models downloaded from S3.")
parser.add_argument("--learning_rate", default=1e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--do_train', action='store_true',
help="Whether to perform training")
parser.add_argument('--do_eval', action='store_true',
help="Whether to perform evaluation")
parser.add_argument('--priming', action='store_true',
help="Whether to use priming for evaluation")
parser.add_argument("--eval_set", choices=['dev', 'test'], default='dev',
help="Whether to perform evaluation on the dev set or the test set")
args = parser.parse_args()
logger.info("Parameters: {}".format(args))
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) \
and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
# Setup CUDA, GPU & distributed training
args.device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
args.n_gpu = torch.cuda.device_count()
# Prepare task
args.task_name = args.task_name.lower()
if args.task_name not in PROCESSORS:
raise ValueError("Task '{}' not found".format(args.task_name))
processor = PROCESSORS[args.task_name]()
args.label_list = processor.get_labels()
train_ex_per_label, test_ex_per_label = None, None
train_ex, test_ex = args.train_examples, args.test_examples
if args.split_examples_evenly:
train_ex_per_label = eq_div(args.train_examples, len(args.label_list)) if args.train_examples != -1 else -1
test_ex_per_label = eq_div(args.test_examples, len(args.label_list)) if args.test_examples != -1 else -1
train_ex, test_ex = None, None
eval_set = TEST_SET if args.eval_set == 'test' else DEV_SET
train_data = load_examples(
args.task_name, args.data_dir, TRAIN_SET, num_examples=train_ex, num_examples_per_label=train_ex_per_label)
eval_data = load_examples(
args.task_name, args.data_dir, eval_set, num_examples=test_ex, num_examples_per_label=test_ex_per_label)
unlabeled_data = load_examples(
args.task_name, args.data_dir, UNLABELED_SET, num_examples=args.unlabeled_examples)
args.metrics = METRICS.get(args.task_name, DEFAULT_METRICS)
pet_model_cfg, pet_train_cfg, pet_eval_cfg = load_pet_configs(args)
sc_model_cfg, sc_train_cfg, sc_eval_cfg = load_sequence_classifier_configs(args)
ipet_cfg = load_ipet_config(args)
if args.method == 'pet':
pet.train_pet(pet_model_cfg, pet_train_cfg, pet_eval_cfg, sc_model_cfg, sc_train_cfg, sc_eval_cfg,
pattern_ids=args.pattern_ids, output_dir=args.output_dir,
ensemble_repetitions=args.pet_repetitions, final_repetitions=args.sc_repetitions,
reduction=args.reduction, train_data=train_data, unlabeled_data=unlabeled_data,
eval_data=eval_data, do_train=args.do_train, do_eval=args.do_eval,
no_distillation=args.no_distillation, seed=args.seed)
elif args.method == 'ipet':
pet.train_ipet(pet_model_cfg, pet_train_cfg, pet_eval_cfg, ipet_cfg, sc_model_cfg, sc_train_cfg, sc_eval_cfg,
pattern_ids=args.pattern_ids, output_dir=args.output_dir,
ensemble_repetitions=args.pet_repetitions, final_repetitions=args.sc_repetitions,
reduction=args.reduction, train_data=train_data, unlabeled_data=unlabeled_data,
eval_data=eval_data, do_train=args.do_train, do_eval=args.do_eval, seed=args.seed)
elif args.method == 'sequence_classifier':
pet.train_classifier(sc_model_cfg, sc_train_cfg, sc_eval_cfg, output_dir=args.output_dir,
repetitions=args.sc_repetitions, train_data=train_data, unlabeled_data=unlabeled_data,
eval_data=eval_data, do_train=args.do_train, do_eval=args.do_eval, seed=args.seed)
else:
raise ValueError(f"Training method '{args.method}' not implemented")
if __name__ == "__main__":
main()