forked from arademaker/sumo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbs.lean
672 lines (584 loc) · 22.9 KB
/
bs.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
/-
The problem is originally presented in:
A. Pease, G. Sutcliffe, N. Siegel, and S. Trac, “Large Theory
Reasoning with SUMO at CASC,” pp. 1–8, Jul. 2009.
Here we present the natural deduction proof in Lean.
-/
constant U : Type
<<<<<<< HEAD
constants SetOrClass Set Class Object Entity NullList_m List : U
constants CorpuscularObject Invertebrate Vertebrate Animal SpinalColumn : U
constants exhaustiveDecomposition3 disjointDecomposition3 partition3 : U → U → U → Prop
constants Organism Agent Physical Abstract: U
constants subclass_m TransitiveRelation PartialOrderingRelation: U
constant BananaSlug10 : U
=======
constants SetOrClass Set Class Object Entity NullList_m List
CorpuscularObject Invertebrate Vertebrate Animal SpinalColumn
Organism Agent Physical Abstract
subclass_m TransitiveRelation PartialOrderingRelation : U
constant BananaSlug10 : U
constants exhaustiveDecomposition3 disjointDecomposition3 partition3 : U → U → U → Prop
>>>>>>> upstream/lists
constant ins : U → U → Prop
constant subclass : U → U → Prop
constant disjoint : U → U → Prop
constant component : U → U → Prop
constant part : U → U → Prop
constant inList : U → U → Prop
constant ConsFn : U → U → U
constant ListFn1 : U → U
constant ListFn2 : U → U → U
constant ListFn3 : U → U → U → U
<<<<<<< HEAD
constant PartialOrderingRelation2 : (U → U → Prop) → Prop
=======
>>>>>>> upstream/lists
/- SUMO axioms -/
variable a72771 : ins Animal SetOrClass
<<<<<<< HEAD
-- axiom1
variable a72772 : ins BananaSlug10 Animal
variable a72778 : ins Invertebrate SetOrClass
/-
axiom2 (edited see https://github.com/own-pt/cl-krr/issues/23)
variable a72773 : ∀ a : U, ∃ p : U, ins p Object ∧
(ins a Animal ∧ ¬ (ins p SpinalColumn ∧ part p a) → ¬ ins a Vertebrate)
-/
variable a72773 : ∀ a : U, ((ins a Animal) ∧ (¬ ∃ p : U, ins p SpinalColumn ∧ part p a))
→ ¬ ins a Vertebrate
/-
(forall (?SPINE)
(=> (instance ?SPINE Object)
(not (and (instance ?SPINE SpinalColumn) (part ?SPINE BananaSlug10)))))
fof(a72774,axiom,! [SPINE] : ((s_instance(SPINE, s_Object) =>
(~ (s_instance(SPINE, s_SpinalColumn) & s_part(SPINE, s_BananaSlug10)))))).
-/
variable a72774 : ¬ ∃ s : U, ins s SpinalColumn ∧ part s BananaSlug10
--variable a72774 : ∀ s : U, ins s Object → ¬ (ins s SpinalColumn ∧ part s BananaSlug10)
=======
variable a72772 : ins BananaSlug10 Animal
variable a72778 : ins Invertebrate SetOrClass
/- EDITED (see https://github.com/own-pt/cl-krr/issues/23) -/
variable a72773 : ∀ a : U, ((ins a Animal) ∧ (¬ ∃ p : U, ins p SpinalColumn ∧ part p a))
→ ¬ ins a Vertebrate
/- EDITED -/
variable a72774 : ¬ ∃ s : U, ins s SpinalColumn ∧ part s BananaSlug10
>>>>>>> upstream/lists
variable a72761 : ∀ x row0 row1 : U, ins row0 Entity ∧ ins row1 Entity ∧ ins x Entity →
ListFn3 x row0 row1 = ConsFn x (ListFn2 row0 row1)
variable a72767 : ∀ x y : U, (ins x Entity ∧ ins y Entity) →
(ListFn2 x y) = (ConsFn x (ConsFn y NullList_m))
<<<<<<< HEAD
variable a72768 : ∀ x : U, ins x Entity →
(ListFn1 x = ConsFn x NullList_m)
variable a72769 : ∀ x : U, ins x Entity →
¬ inList x NullList_m
=======
variable a72768 : ∀ x : U, ins x Entity → (ListFn1 x = ConsFn x NullList_m)
variable a72769 : ∀ x : U, ins x Entity → ¬ inList x NullList_m
>>>>>>> upstream/lists
variable a72770 : ∀ L x y : U, (ins x Entity ∧ ins y Entity ∧ ins L List) →
(inList x (ConsFn y L)) ↔ ((x = y) ∨ inList x L)
<<<<<<< HEAD
--variable a67331 : ins Entity SetOrClass
variable a67958 : ins List SetOrClass
variable a67959 : ins NullList_m List
/-
(instance Vertebrate SetOrClass)
fof(a71402,axiom,s_instance(s_Vertebrate, s_SetOrClass)).
-/
variable a71402 : ins Vertebrate SetOrClass
/-
(instance Animal SetOrClass)
fof(a71402,axiom,s_instance(s_Animal, s_SetOrClass)).
-/
variable a71403 : ins Animal SetOrClass
/-
(instance Organism SetOrClass)
fof(a71390,axiom,s_instance(s_Organism, s_SetOrClass)).
-/
variable a71390 : ins Organism SetOrClass
/-
(instance Agent SetOrClass)
fof(a71894,axiom,s_instance(s_Agent, s_SetOrClass)).
-/
variable a71894 : ins Agent SetOrClass
/-
(instance Object SetOrClass)
fof(a71691,axiom,s_instance(s_Object, s_SetOrClass)).
-/
variable a71691 : ins Object SetOrClass
/-
(instance Physical SetOrClass)
fof(a69782,axiom,s_instance(s_Physical, s_SetOrClass)).
-/
variable a69782 : ins Physical SetOrClass
/-
(instance Entity SetOrClass)
fof(a67331,axiom,s_instance(s_Entity, s_SetOrClass)).
-/
variable a67332 : ins Entity SetOrClass
/-
(instance SetOrClass SetOrClass)
fof(a67448,axiom,s_instance(s_SetOrClass, s_SetOrClass)).
-/
variable a67448 : ins SetOrClass SetOrClass
/-
(instance Abstract SetOrClass)
fof(a68791,axiom,s_instance(s_Abstract, s_SetOrClass)).
-/
variable a68791 : ins Abstract SetOrClass
-- axPVI
variable a71370 : partition3 Animal Vertebrate Invertebrate
-- axPartition
variable a67131 : ∀ c row0 row1 : U, (ins row0 Class ∧ ins c Class ∧ ins row1 Class) →
partition3 c row0 row1 ↔ (exhaustiveDecomposition3 c row0 row1 ∧ disjointDecomposition3 c row0 row1)
-- axExDec
variable a67963 : ∀ row0 row1 row2 c : U, (∀ obj : U, (∃ item : U, ins item SetOrClass ∧ ins obj Entity →
(ins c SetOrClass ∧ ins c Class ∧ ins row1 Class ∧ ins row1 Entity ∧ ins row0 Class ∧ ins row0 Entity ∧ ins row2 Entity) →
exhaustiveDecomposition3 c row0 row1 → ins obj Class → inList item (ListFn3 row0 row1 row2) ∧ ins obj item))
-- axExDec (manual edited see https://github.com/own-pt/cl-krr/issues/22)
/-variable a67115 : ∀ row1 row0 c : U, ∀ obj : U, ∃ item : U, ins item SetOrClass ∧
(ins obj Entity →
((ins c SetOrClass ∧ ins c Class ∧ ins row1 Class ∧ ins row1 Entity ∧ ins row0 Class ∧ ins row0 Entity) →
(exhaustiveDecomposition3 c row0 row1 → (ins obj c → (inList item (ListFn2 row0 row1) ∧ ins obj item)))))
-/
variable a67115 :
∀ (row1 row0 c obj : U),
∃ (item : U),
ins item SetOrClass ∧
(ins obj Entity →
ins row1 SetOrClass ∧
ins row1 Class ∧ ins row0 Class ∧ ins row0 Entity ∧ ins c Class ∧ ins c Entity →
exhaustiveDecomposition3 row1 row0 c → ins obj row1 → inList item (ListFn2 row0 c) ∧ ins obj item)
/-
(partition3 SetOrClass Set Class)
fof(a67447,axiom,s_partition3(s_SetOrClass, s_Set, s_Class)).
-/
variable a67447 : partition3 SetOrClass Set Class
/-
(subclass Vertebrate Animal)
fof(a71382,axiom,s_subclass(s_Vertebrate, s_Animal)).
-/
variable a71382 : subclass Vertebrate Animal
/-
(subclass Invertebrate Animal)
fof(a71383,axiom,s_subclass(s_Invertebrate, s_Animal)).
-/
variable a71383 : subclass Invertebrate Animal
-- REDUNDANT (see https://github.com/own-pt/cl-krr/issues/24) ON TPTP TRANSLATION
/-
(forall (?Y ?X)
(=> (and (instance ?Y SetOrClass) (instance ?X SetOrClass))
(=> (subclass ?X ?Y)
(and (instance ?X SetOrClass) (instance ?Y SetOrClass)))))
fof(a14,axiom,! [Y,X] : (((s_instance(Y, s_SetOrClass) & s_instance(X, s_SetOrClass)) => (s_subclass(X, Y) =>
(s_instance(X, s_SetOrClass) & s_instance(Y, s_SetOrClass)))))).
-/
variable a14 : ∀ x y : U, subclass x y → ins x SetOrClass ∧ ins y SetOrClass
/-
(forall (?Y ?Z ?X)
(=> (and (instance ?X SetOrClass) (instance ?Y SetOrClass))
(=> (and (subclass ?X ?Y) (instance ?Z ?X))
(instance ?Z ?Y))))
fof(a15,axiom,! [Y,Z,X] : (((s_instance(X, s_SetOrClass) & s_instance(Y, s_SetOrClass)) => ((s_subclass(X, Y) & s_instance(Z, X)) => s_instance(Z, Y))))).
-/
variable a15 : ∀ x y z : U, ins x SetOrClass ∧ ins y SetOrClass → (subclass x y ∧ ins z x → ins z y)
--variable a16 : ∀ x y z : U, partition3 x y z → ins x Class ∧ ins y Class ∧ ins z Class
/-
(exists (?THING) (instance ?THING Entity))
fof(a67172,axiom,? [THING] : (s_instance(THING, s_Entity))).
-/
variable a67172 : ∃ x : U, ins x Entity
/-
(forall (?CLASS) (<=> (instance ?CLASS Class) (subclass ?CLASS Entity)))
fof(a67173,axiom,! [CLASS] : ((s_instance(CLASS, s_Class) <=> s_subclass(CLASS, s_Entity)))).
-/
variable a67173 : ∀ c : U, ins c Class ↔ subclass c Entity
/-
(instance TransitiveRelation SetOrClass)
fof(a71866,axiom,s_instance(s_TransitiveRelation, s_SetOrClass)).
-/
variable a71866 : ins TransitiveRelation SetOrClass
/-
(instance PartialOrderingRelation SetOrClass)
fof(a72202,axiom,s_instance(s_PartialOrderingRelation, s_SetOrClass)).
-/
variable a72202 : ins PartialOrderingRelation SetOrClass
/-
(instance subclass PartialOrderingRelation)
fof(a13,axiom,s_instance(s_subclass_m, s_PartialOrderingRelation)).
-/
variable a13 : ins subclass_m PartialOrderingRelation
/-
(subclass PartialOrderingRelation TransitiveRelation)
fof(a67817,axiom,s_subclass(s_PartialOrderingRelation, s_TransitiveRelation)).
-/
variable a67817 : subclass PartialOrderingRelation TransitiveRelation
/-
(forall (?Y ?Z ?X)
(=> (and (instance ?X SetOrClass) (instance ?Y SetOrClass))
(=> (and (subclass ?X ?Y) (instance ?Z ?X)) (instance ?Z ?Y))))
fof(a15,axiom,! [Y,Z,X] : (((s_instance(X, s_SetOrClass) & s_instance(Y, s_SetOrClass)) => ((s_subclass(X, Y) & s_instance(Z, X)) => s_instance(Z, Y))))).
-/
variable a16: ∀ x y z : U, ins x SetOrClass ∧ ins y SetOrClass → subclass x y ∧ ins z x → ins z y
/-
(forall (?INST1 ?INST2 ?INST3)
(=>
(and (instance ?INST2 SetOrClass) (instance ?INST1 SetOrClass)
(instance ?INST3 SetOrClass))
(=> (instance subclass TransitiveRelation)
(=> (and (subclass ?INST1 ?INST2) (subclass ?INST2 ?INST3))
(subclass ?INST1 ?INST3)))))
fof(a67808,axiom,! [INST1,INST2,INST3] : (((s_instance(INST2, s_SetOrClass) & s_instance(INST1, s_SetOrClass) & s_instance(INST3, s_SetOrClass)) => (s_instance(s_subclass_m, s_TransitiveRelation) => ((s_subclass(INST1, INST2) & s_subclass(INST2, INST3)) => s_subclass(INST1, INST3)))))).
-/
variable a67808 : ∀ x y z : U, ins x SetOrClass ∧ ins y SetOrClass ∧ ins z SetOrClass → ins subclass_m TransitiveRelation →
(subclass x y ∧ subclass y z → subclass x z)
/-
(subclass Animal Organism)
fof(a71388,axiom,s_subclass(s_Animal, s_Organism)).
-/
variable a71388 : subclass Animal Organism
/-
(subclass Organism Agent)
fof(a71359,axiom,s_subclass(s_Organism, s_Agent)).
-/
variable a71359 : subclass Organism Agent
/-
(subclass Agent Object)
fof(a67315,axiom,s_subclass(s_Agent, s_Object)).
-/
variable a67315 : subclass Agent Object
/-
(subclass Object Physical)
fof(a67177,axiom,s_subclass(s_Object, s_Physical)).
-/
variable a67177 : subclass Object Physical
/-
(subclass Physical Entity)
fof(a67174,axiom,s_subclass(s_Physical, s_Entity)).
-/
variable a67174 : subclass Physical Entity
/-
(subclass SetOrClass Abstract)
fof(a67446,axiom,s_subclass(s_SetOrClass, s_Abstract)).
-/
variable a67446 : subclass SetOrClass Abstract
/-
(subclass Abstract Entity)
fof(a67332,axiom,s_subclass(s_Abstract, s_Entity)).
-/
variable a67333 : subclass Abstract Entity
-- starting proofs
/-
include a72773 a72774 a72772
lemma BS10notVert (hne : nonempty U) : ¬(ins BananaSlug10 Vertebrate) :=
by simp *
-/
include a72773 a72774 a72772
lemma BS10notVert (hne : nonempty U) : ¬(ins BananaSlug10 Vertebrate) :=
=======
variable a67958 : ins List SetOrClass
variable a67959 : ins NullList_m List
variable a71402 : ins Vertebrate SetOrClass
variable a71371 : ins Organism SetOrClass
variable a71872 : ins Agent SetOrClass
variable a71669 : ins Object SetOrClass
variable a69763 : ins Physical SetOrClass
variable a67331 : ins Entity SetOrClass
variable a67448 : ins SetOrClass SetOrClass
variable a68771 : ins Abstract SetOrClass
variable a71370 : partition3 Animal Vertebrate Invertebrate
variable a67131 : ∀ c row0 row1 : U, (ins row0 Class ∧ ins c Class ∧ ins row1 Class) →
partition3 c row0 row1 ↔ (exhaustiveDecomposition3 c row0 row1 ∧ disjointDecomposition3 c row0 row1)
-- EDITED (see https://github.com/own-pt/cl-krr/issues/22)
variable a67115 :
∀ (row0 row1 c obj : U),
∃ (item : U),
ins item SetOrClass ∧
(ins obj Entity →
ins row1 SetOrClass ∧ ins row1 Class ∧
ins row0 Class ∧ ins row0 Entity ∧
ins c Class ∧ ins c Entity →
exhaustiveDecomposition3 row1 row0 c → ins obj row1 → inList item (ListFn2 row0 c) ∧ ins obj item)
variable a67447 : partition3 SetOrClass Set Class
variable a71382 : subclass Vertebrate Animal
variable a71383 : subclass Invertebrate Animal
variable a15 : ∀ x y z : U, ins x SetOrClass ∧ ins y SetOrClass → (subclass x y ∧ ins z x → ins z y)
variable a67172 : ∃ x : U, ins x Entity
variable a67173 : ∀ c : U, ins c Class ↔ subclass c Entity
variable a71844 : ins TransitiveRelation SetOrClass
variable a72180 : ins PartialOrderingRelation SetOrClass
variable a13 : ins subclass_m PartialOrderingRelation
variable a67818 : subclass PartialOrderingRelation TransitiveRelation
variable a67809 : ∀ x y z : U, ins x SetOrClass ∧ ins y SetOrClass ∧ ins z SetOrClass → ins subclass_m TransitiveRelation →
(subclass x y ∧ subclass y z → subclass x z)
variable a71369 : subclass Animal Organism
variable a71340 : subclass Organism Agent
variable a67315 : subclass Agent Object
variable a67177 : subclass Object Physical
variable a67174 : subclass Physical Entity
variable a67446 : subclass SetOrClass Abstract
variable a67332 : subclass Abstract Entity
-- starting proofs
include a72773 a72774 a72772
lemma l0' (hne : nonempty U) : ¬(ins BananaSlug10 Vertebrate) := by simp *
lemma l0 (hne : nonempty U) : ¬(ins BananaSlug10 Vertebrate) :=
>>>>>>> upstream/lists
begin
specialize a72773 BananaSlug10,
exact a72773 (and.intro a72772 a72774)
end
omit a72773 a72774 a72772
<<<<<<< HEAD
include a71388 a67817 a13 a71359 a67315 a67177 a67174 a16 a71866 a72202 a67808 a71403 a71390 a71894 a71691 a69782 a67332
lemma l1 (hne : nonempty U) : subclass Animal Entity :=
begin
have h, exact ((a16 PartialOrderingRelation TransitiveRelation subclass_m)
(and.intro a72202 a71866))
(and.intro a67817 a13),
apply (a67808 Animal Physical Entity),
=======
include a71369 a67818 a13 a71340 a67315 a67177 a67174 a15 a71844 a72180 a67809 a72771 a71371 a71872 a71669 a69763 a67332
lemma l1 (hne : nonempty U) : subclass Animal Entity :=
begin
have h, exact ((a15 PartialOrderingRelation TransitiveRelation subclass_m)
(and.intro a72180 a71844))
(and.intro a67818 a13),
apply (a67809 Animal Physical Entity),
>>>>>>> upstream/lists
simp *,
assumption,
simp *,
apply (a67808 Animal Object Physical),
simp *,
assumption,
simp *,
apply (a67808 Animal Agent Object),
simp *,
assumption,
simp *,
apply (a67808 Animal Organism),
simp *,
assumption,
simp *,
end
include a71402 a71382
lemma l1a (hne : nonempty U) : subclass Vertebrate Entity :=
begin
<<<<<<< HEAD
have h, exact ((a16 PartialOrderingRelation TransitiveRelation subclass_m)
=======
have h, exact ((a15 PartialOrderingRelation TransitiveRelation subclass_m)
>>>>>>> upstream/lists
(and.intro a72202 a71866))
(and.intro a67817 a13),
have h₂, from (a67808 Vertebrate Animal Organism) (and.intro a71402 (and.intro a71403 a71390)) h (and.intro a71382 a71388),
have h₃, from (a67808 Vertebrate Organism Agent) (and.intro a71402 (and.intro a71390 a71894)) h (and.intro h₂ a71359),
--have h₄, from (a67808 Vertebrate Agent Object) (and.intro a71402 (and.intro a71894 a71691)) h (and.intro h₃ a67315),
<<<<<<< HEAD
have h₄, from begin apply (a67808 Vertebrate Agent Object), repeat{simp *} end,
=======
have h₄, from begin apply (a67808 Vertebrate Agent Object), repeat {simp *} end,
>>>>>>> upstream/lists
have h₅, from (a67808 Vertebrate Object Physical) (and.intro a71402 (and.intro a71691 a69782)) h (and.intro h₄ a67177),
have h₆, from (a67808 Vertebrate Physical Entity) (and.intro a71402 (and.intro a69782 a67332)) h (and.intro h₅ a67174),
exact h₆
end
lemma l1b (hne : nonempty U) : subclass Vertebrate Entity :=
begin
<<<<<<< HEAD
have h, exact ((a16 PartialOrderingRelation TransitiveRelation subclass_m)
(and.intro a72202 a71866)) (and.intro a67817 a13),
apply (a67808 Vertebrate Physical Entity),
exact and.intro a71402 (and.intro a69782 a67332),
=======
have h, exact ((a15 PartialOrderingRelation TransitiveRelation subclass_m)
(and.intro a72180 a71844)) (and.intro a67818 a13),
apply (a67809 Vertebrate Physical Entity),
exact and.intro a71402 (and.intro a69763 a67332),
>>>>>>> upstream/lists
exact h,
apply and.intro,
apply (a67808 Vertebrate Object Physical),
exact and.intro a71402 (and.intro a71691 a69782),
exact h,
apply and.intro,
apply (a67808 Vertebrate Agent Object),
exact and.intro a71402 (and.intro a71894 a71691),
exact h,
apply and.intro,
apply (a67808 Vertebrate Organism Agent),
exact and.intro a71402 (and.intro a71390 a71894),
exact h,
apply and.intro,
apply (a67808 Vertebrate Animal Organism),
exact and.intro a71402 (and.intro a71403 a71390),
exact h,
exact and.intro a71382 a71388,
repeat {assumption}
end
lemma l1c (hne : nonempty U) : subclass Vertebrate Entity :=
begin
<<<<<<< HEAD
have h, exact ((a16 PartialOrderingRelation TransitiveRelation subclass_m)
(and.intro a72202 a71866))
(and.intro a67817 a13),
have h1,from begin apply l1, repeat {assumption} end,
apply a67808 Vertebrate Animal Entity,
=======
have h, exact ((a15 PartialOrderingRelation TransitiveRelation subclass_m)
(and.intro a72180 a71844))
(and.intro a67818 a13),
have h1,from begin apply l1, repeat {assumption} end,
apply a67809 Vertebrate Animal Entity,
>>>>>>> upstream/lists
simp *,
assumption,
simp *,
assumption
end
include a67173
lemma l2 (hne : nonempty U) : ins Vertebrate Class :=
begin
specialize a67173 Vertebrate,
rw a67173,
apply l1b, repeat {assumption}
end
omit a71382 a71402 a67173
include a71383 a72778
lemma l3b (hne : nonempty U) : subclass Invertebrate Entity :=
begin
<<<<<<< HEAD
have h, exact ((a16 PartialOrderingRelation TransitiveRelation subclass_m)
=======
have h, exact ((a15 PartialOrderingRelation TransitiveRelation subclass_m)
>>>>>>> upstream/lists
(and.intro a72202 a71866)) (and.intro a67817 a13),
apply (a67808 Invertebrate Physical Entity),
exact and.intro a72778 (and.intro a69782 a67332),
exact h,
apply and.intro,
apply (a67808 Invertebrate Object Physical),
exact and.intro a72778 (and.intro a71691 a69782),
exact h,
apply and.intro,
apply (a67808 Invertebrate Agent Object),
exact and.intro a72778 (and.intro a71894 a71691),
exact h,
apply and.intro,
apply (a67808 Invertebrate Organism Agent),
exact and.intro a72778 (and.intro a71390 a71894),
exact h,
apply and.intro,
apply (a67808 Invertebrate Animal Organism),
exact and.intro a72778 (and.intro a71403 a71390),
exact h,
simp *,
repeat {assumption}
end
include a67173
lemma l4 (hne : nonempty U): ins Invertebrate Class:=
begin
rw a67173,
apply l3b, repeat {assumption}
end
--hoping to learn a better way to do this:
<<<<<<< HEAD
omit a67173 a71388 a67817 a13 a71359 a67315 a67177 a67174 a16 a71866 a72202 a67808 a71403 a71390 a71894 a71691 a69782 a67332 a72778 a71383
=======
omit a67173 a71388 a67817 a13 a71359 a67315 a67177 a67174 a15 a71866 a72202 a67808 a71403 a71390 a71894 a71691 a69782 a67332 a72778 a71383
>>>>>>> upstream/lists
include a71388 a67817 a13 a71359 a67315 a67177 a67174 a16 a71866 a72202 a67808 a71403 a71390 a71894 a71691 a69782 a67332 a71402 a71382 a67173 a71383 a72778 a67131 a67115 a72772 a71370 a72761 a72767 a72768 a72769 a72770 a67958 a67959 a67446 a67333 a67448 a68791
lemma BS10VI (hne : nonempty U) : ins BananaSlug10 Vertebrate ∨ ins BananaSlug10 Invertebrate :=
begin
<<<<<<< HEAD
have h₂, exact ((a16 PartialOrderingRelation TransitiveRelation subclass_m)
=======
have h₂, exact ((a15 PartialOrderingRelation TransitiveRelation subclass_m)
>>>>>>> upstream/lists
(and.intro a72202 a71866))
(and.intro a67817 a13),
have h₁ : subclass Animal Entity, from begin apply l1, repeat{assumption} end,
have h₃ : subclass SetOrClass Entity,
from
begin
apply (a67808 SetOrClass Abstract Entity),
simp *, assumption, simp *
end,
have h : ins Animal Class, from begin rw a67173, exact h₁ end,
have h₄ : ins Vertebrate Entity, from
begin apply (a16 SetOrClass Entity Vertebrate), simp * , simp * end,
have h₅ : ins Invertebrate Entity, from
begin apply (a16 SetOrClass Entity Invertebrate), simp * , simp * end,
have h1, from begin apply l2, repeat{assumption} end,
have h2, from begin apply l4, repeat{assumption} end,
have h3 : exhaustiveDecomposition3 Animal Vertebrate Invertebrate ∧ disjointDecomposition3 Animal Vertebrate Invertebrate,
from
begin
rw ←(a67131 Animal Vertebrate Invertebrate),
simp *
end,
have h4, from begin exact (a67115 Animal Vertebrate Invertebrate BananaSlug10) end,
cases h4 with x h4_x,
have h5 : inList x (ListFn2 Vertebrate Invertebrate) ∧ ins BananaSlug10 x,
from
begin
apply h4_x.right,
apply (a16 Animal Entity BananaSlug10), simp *,
simp *,
simp *,
exact h3.left,
assumption
end,
have h6 : inList x (ConsFn Vertebrate (ConsFn Invertebrate NullList_m)), from
begin
have q : ListFn2 Vertebrate Invertebrate = ConsFn Vertebrate (ConsFn Invertebrate NullList_m), from
begin
apply (a72767 Vertebrate Invertebrate),
simp *,
end,
rw ←q,
exact h5.left
end,
have h7: x = Vertebrate ∨ inList x (ConsFn Invertebrate NullList_m), from
begin
rw ←(a72770 (ConsFn Invertebrate NullList_m) x Vertebrate),
simp * --?
end,
cases h7,
rw ←h7,
exact or.inl h5.right,
have h8 : x = Invertebrate ∨ inList x NullList_m, from
begin
rw ←(a72770 NullList_m x Invertebrate),
simp *
end,
cases h8,
rw ←h8,
exact or.inr h5.right,
apply false.elim,
apply a72769 x,
apply a16 SetOrClass Entity x,
simp *, simp *,
assumption
end
include a72773 a72774
theorem goal (hne: nonempty U) : ins BananaSlug10 Invertebrate :=
begin
have h, from begin apply BS10VI, repeat{assumption} end,
cases h,
apply false.elim,
<<<<<<< HEAD
apply BS10notVert,
repeat{assumption}
end
-- draft
=======
apply l0,
repeat{assumption}
end
>>>>>>> upstream/lists
-- tem como provar?
variable axiom4 : ¬ (Vertebrate = Invertebrate)