-
Notifications
You must be signed in to change notification settings - Fork 20
/
CMakeLists.txt
200 lines (176 loc) · 8.29 KB
/
CMakeLists.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
cmake_minimum_required(VERSION 3.10.0)
project(infer)
add_definitions(-std=c++11 -w)
option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_BUILD_TYPE Debug)
# 1. 设置工作目录,里面会放测试图片和模型,生成的可执行文件也会在该目录下
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/workspaces)
set(CMAKE_INSTALL_PREFIX ${EXECUTABLE_OUTPUT_PATH}/install/) # make install时的存储路径
# 2. 设置显卡算力,如果你是不同显卡,请设置为显卡对应的号码参考下面的链接,我这里是RTX 3060,对应的是sm_86:
# https://developer.nvidia.com/zh-cn/cuda-gpus#compute
# set(CUDA_NVCC_FLAGS "-gencode=arch=compute_86,code=sm_86;-G;-g;-O0;-w")
set(CUDA_NVCC_FLAGS "-gencode=arch=compute_86,code=sm_86;-g;-O2;-w")
# set(CUDA_NVCC_FLAGS "-gencode=arch=compute_87,code=sm_87;-g;-O2;-w") # 如果是orin,对应的是sm_87
# 3. 寻找cuda和opencv库
find_package(CUDA REQUIRED) # 这个默认你本机已经安装
find_package(OpenCV REQUIRED) # 如果你没安装,sudo apt-get install libopencv-dev
# find_package(OpenCV 4 REQUIRED)
find_package(Eigen3 REQUIRED)
include_directories(${EIGEN3_INCLUDE_DIRS})
message(STATUS ${EIGEN3_INCLUDE_DIRS})
include_directories(/usr/local/include/yaml-cpp/)
link_libraries(/usr/local/lib/libyaml-cpp.a)
set(CMAKE_C_COMPILER /usr/bin/gcc)
set(CMAKE_CXX_COMPILER /usr/bin/g++)
set(CUDA_TOOLKIT_ROOT_DIR /usr/local/cuda)
set(CUDA_INCLUDE_DIRS ${CUDA_TOOLKIT_ROOT_DIR}/include)
# 4. 设置tensorrt的主目录,支持tensorrt7.xx和tensorrt8.xx
set(TensorRT_ROOT "/home/uisee/disk/TensorRT-8.5.1.7") # 设置tensorrt8.xx根目录,改为你自己的即可
# set(TensorRT_ROOT "/usr/src/tensorrt/") # 在Orin中TensorRT根目录
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -pthread -g -Wall -Ofast -Wfatal-errors -D_MWAITXINTRIN_H_INCLUDED -O0")
# set(CMAKE_CXX_FLAGS_RELEASE "$ENV{CXXFLAGS} -O3 -Wall")
set(CMAKE_CXX_FLAGS_RELEASE "-Wno-deprecated-declarations -O2")
set( SMS 30 32 35 37 50 52 53 60 61 62 70 72 75 86 87)
foreach(sm ${SMS})
set(GENCODE ${GENCODE} -gencode arch=compute_${sm},code=sm_${sm})
endforeach()
set(HIGHEST_SM 87)
set(GENCODE ${GENCODE} -gencode arch=compute_${HIGHEST_SM},code=compute_${HIGHEST_SM})
set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS}
-ccbin ${CMAKE_CXX_COMPILER}
)
set(CMAKE_BUILD_TYPE "RELEASE")
if(${CMAKE_BUILD_TYPE} STREQUAL "DEBUG")
message("Using Debug Mode")
set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} -g -G --ptxas-options=-v)
endif()
set(CUDA_LIB_DIRS ${CUDA_TOOLKIT_ROOT_DIR}/lib64)
find_library(NVJPEG_LIBRARY nvjpeg ${CUDA_LIB_DIRS})
message(STATUS "NVJPEG_LIBRARY = ${NVJPEG_LIBRARY}")
if(NVJPEG_LIBRARY)
add_definitions(-D__HAVE_NVJPEG__)
link_libraries(${NVJPEG_LIBRARY})
message(STATUS ${NVJPEG_LIBRARY})
endif()
# 5. include所有要用到的hpp文件路径
include_directories(
${OpenCV_INCLUDE_DIRS}
${CUDA_INCLUDE_DIRS}
# tensorrt
${TensorRT_ROOT}/include # X86中的tensorrt include路径
${TensorRT_ROOT}/samples/common # 导入这个主要是为了适应于trt多版本[v7.xx,v8.xx]的logger导入
# /usr/include/x86_64-linux-gnu/ # Orin中的tensorrt include路径
# 项目里要用到的
${PROJECT_SOURCE_DIR}/utils
${PROJECT_SOURCE_DIR}/application
)
# 6. link要用到的so库路径
# 补充:具体的cuda_lib库命名可以看 https://cmake.org/cmake/help/latest/module/FindCUDA.html
link_directories(
# cuda
${CUDA_TOOLKIT_ROOT_DIR}/lib64
# tensorrt
${TensorRT_ROOT}/lib # X86中的tensorrt lib路径
# /usr/lib/x86_64-linux-gnu/ # Orin中的tensorrt lib路径
)
# 7. 将utils里写好的cu文件和cpp文件编译成so库,方便后面调用
file(GLOB_RECURSE cpp_cuda_srcs
${PROJECT_SOURCE_DIR}/main.cpp
${PROJECT_SOURCE_DIR}/application/rt_detr_app/*.cpp
${PROJECT_SOURCE_DIR}/application/detr_app/*.cpp
${PROJECT_SOURCE_DIR}/application/yolov7_app/*.cpp
${PROJECT_SOURCE_DIR}/application/yolov7_cutoff_app/*.cpp
${PROJECT_SOURCE_DIR}/application/yolov7_pose_app/*.cpp
${PROJECT_SOURCE_DIR}/application/yolov5_app/*.cpp
${PROJECT_SOURCE_DIR}/application/yolox_mmdet_app/*.cpp
${PROJECT_SOURCE_DIR}/application/yolop_app/*.cpp
${PROJECT_SOURCE_DIR}/application/smoke_det_app/*.cpp
${PROJECT_SOURCE_DIR}/application/yolov8_app/yolov8_det_app/*.cpp
${PROJECT_SOURCE_DIR}/application/yolov8_app/yolov8_seg_app/*.cpp
${PROJECT_SOURCE_DIR}/application/yolov8_app/yolov8_obb_app/*.cpp
${PROJECT_SOURCE_DIR}/application/yolov8_app/yolov8_pose_app/*.cpp
${PROJECT_SOURCE_DIR}/application/yolov9_app/*.cpp
${PROJECT_SOURCE_DIR}/application/depth_anything_app/*.cpp
${PROJECT_SOURCE_DIR}/utils/common/*.cpp
${PROJECT_SOURCE_DIR}/utils/tracker/ByteTracker/*.cpp
${PROJECT_SOURCE_DIR}/utils/backend/tensorrt/*.cpp
${PROJECT_SOURCE_DIR}/utils/preprocess/*.cu
${PROJECT_SOURCE_DIR}/utils/preprocess/*.cpp
${PROJECT_SOURCE_DIR}/utils/postprocess/*.cu
${PROJECT_SOURCE_DIR}/utils/postprocess/*.cpp
${PROJECT_SOURCE_DIR}/utils/plugins/modulated_deform_conv/*.cpp
${PROJECT_SOURCE_DIR}/utils/plugins/modulated_deform_conv/*.cu
${PROJECT_SOURCE_DIR}/utils/plugins/pillarScatter/*.cpp
${PROJECT_SOURCE_DIR}/utils/plugins/pillarScatter/*.cu
${PROJECT_SOURCE_DIR}/utils/kernels/grid_sampler/*.cu
${PROJECT_SOURCE_DIR}/utils/kernels/iou3d_nms/*.cu
${TensorRT_ROOT}/samples/common/logger.cpp # 引用对应版本的logger.cpp,用来适应多版本
${TensorRT_ROOT}/samples/common/sampleOptions.cpp
${TensorRT_ROOT}/samples/common/sampleUtils.cpp
)
cuda_add_library(utils_cu_cpp SHARED ${cpp_cuda_srcs})
add_executable(infer
${PROJECT_SOURCE_DIR}/mains/main_rt_detr.cpp
${PROJECT_SOURCE_DIR}/mains/main_detr_det.cpp
${PROJECT_SOURCE_DIR}/mains/main_yolov7_det.cpp
${PROJECT_SOURCE_DIR}/mains/main_yolov7_cutoff_det.cpp
${PROJECT_SOURCE_DIR}/mains/main_yolov7_pose_det.cpp
${PROJECT_SOURCE_DIR}/mains/main_yolov5_det.cpp
${PROJECT_SOURCE_DIR}/mains/main_yolox_det.cpp
${PROJECT_SOURCE_DIR}/mains/main_yolop_det.cpp
${PROJECT_SOURCE_DIR}/mains/main_yolov8_det.cpp
${PROJECT_SOURCE_DIR}/mains/main_yolov8_seg.cpp
${PROJECT_SOURCE_DIR}/mains/main_yolov8_obb.cpp
${PROJECT_SOURCE_DIR}/mains/main_yolov8_pose.cpp
${PROJECT_SOURCE_DIR}/mains/main_yolov9_det.cpp
${PROJECT_SOURCE_DIR}/mains/main_track_yolov8_det.cpp
${PROJECT_SOURCE_DIR}/mains/main_smoke_det.cpp
${PROJECT_SOURCE_DIR}/mains/main_depth_anything.cpp
)
# 8. 链接要所有要用到的so库
target_link_libraries(infer
utils_cu_cpp # 调用上面编译好的so库
cuda
cudart
cudnn
pthread
${OpenCV_LIBS}
nvinfer
nvinfer_plugin
nvonnxparser
libjpeg.so
)
# make install 时需要用到
install(TARGETS infer utils_cu_cpp
RUNTIME DESTINATION bin
LIBRARY DESTINATION lib)
install(DIRECTORY
${PROJECT_SOURCE_DIR}/mains
${PROJECT_SOURCE_DIR}/utils/backend
${PROJECT_SOURCE_DIR}/utils/backend/tensorrt
${PROJECT_SOURCE_DIR}/utils/common
${PROJECT_SOURCE_DIR}/utils/postprocess
${PROJECT_SOURCE_DIR}/utils/preprocess
${PROJECT_SOURCE_DIR}/application/
${PROJECT_SOURCE_DIR}/application/rt_detr_app
${PROJECT_SOURCE_DIR}/application/detr_app
${PROJECT_SOURCE_DIR}/application/yolov7_app
${PROJECT_SOURCE_DIR}/application/yolov7_cutoff_app
${PROJECT_SOURCE_DIR}/application/yolov7_pose_app
${PROJECT_SOURCE_DIR}/application/yolov5_app
${PROJECT_SOURCE_DIR}/application/yolox_mmdet_app
${PROJECT_SOURCE_DIR}/application/yolop_app
${PROJECT_SOURCE_DIR}/application/smoke_det_app
${PROJECT_SOURCE_DIR}/application/depth_anything_app
${PROJECT_SOURCE_DIR}/application/yolov8_app/yolov8_det_app
${PROJECT_SOURCE_DIR}/application/yolov8_app/yolov8_seg_app
${PROJECT_SOURCE_DIR}/application/yolov8_app/yolov8_obb_app
${PROJECT_SOURCE_DIR}/application/yolov8_app/yolov8_pose_app
${PROJECT_SOURCE_DIR}/application/yolov9_app
${PROJECT_SOURCE_DIR}/utils/plugins/modulated_deform_conv
${PROJECT_SOURCE_DIR}/utils/plugins/pillarScatter
${PROJECT_SOURCE_DIR}/utils/kernels/grid_sampler
${PROJECT_SOURCE_DIR}/utils/kernels/iou3d_nms
DESTINATION include/
FILES_MATCHING PATTERN "*.hpp" PATTERN "*.h" PATTERN "*.cu")