-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeedup.py
74 lines (67 loc) · 3.45 KB
/
speedup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright 2020 Petuum, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
class SpeedupFunction(object):
def __init__(self, goodput_fn, max_batch_size=None, atomic_bsz_range=None,
accumulation=False, mem_size=32):
self._goodput_fn = goodput_fn
self._max_batch_size = max_batch_size
self._atomic_bsz_range = atomic_bsz_range
self._accumulation = accumulation
self._mem_size = mem_size
self._base_goodput, _, _ = goodput_fn.optimize(
num_nodes=1, num_replicas=1, max_batch_size=max_batch_size,
atomic_bsz_range=atomic_bsz_range, accumulation=accumulation)
# Memoization for fast repeated queries.
self._mem_speedup = -np.ones((mem_size, mem_size))
self._mem_speedup[0, 0] = 0.0
def __call__(self, num_nodes, num_replicas):
assert np.all(np.less_equal(0, num_nodes))
assert np.all(np.less_equal(num_nodes, num_replicas))
assert np.all((num_nodes > 0) == (num_replicas > 0))
# Remember what the output shape/format should be and flatten inputs.
output_scalar = np.isscalar(num_nodes) and np.isscalar(num_replicas)
output_shape = np.broadcast(num_nodes, num_replicas).shape
num_nodes = np.broadcast_to(num_nodes, output_shape).flatten()
num_replicas = np.broadcast_to(num_replicas, output_shape).flatten()
# Return values which will be filled out.
speedup = -np.ones(output_shape).flatten()
# Fill in any previously memoized results first.
indices = num_replicas < self._mem_size
mem_idx = (num_nodes[indices], num_replicas[indices])
# print("mem idx:",mem_idx)
# print("indices:",indices)
speedup[indices] = self._mem_speedup[mem_idx]
# Find the missing indices which still need to be computed.
missing = speedup < 0
if np.count_nonzero(missing) > 0:
num_nodes, num_replicas = num_nodes[missing], num_replicas[missing]
# Find unique inputs to reduce compuation.
(num_nodes, num_replicas), inverse = np.unique(
np.stack([num_nodes, num_replicas]),
axis=1, return_inverse=True)
goodput, _, _ = self._goodput_fn.optimize(
num_nodes, num_replicas,
max_batch_size=self._max_batch_size,
atomic_bsz_range=self._atomic_bsz_range,
accumulation=self._accumulation)
# Memoize results.
indices = num_replicas < self._mem_size
mem_idx = (num_nodes[indices], num_replicas[indices])
self._mem_speedup[mem_idx] = goodput[indices] / self._base_goodput
# Fill in computed results.
speedup[missing] = goodput[inverse] / self._base_goodput
assert np.all(np.less_equal(0, speedup))
speedup = speedup.reshape(output_shape)
return speedup.item() if output_scalar else speedup