-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_epoch.py
105 lines (91 loc) · 4.06 KB
/
train_epoch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Training functions.
# Copyright (c) 5.2021. Yinyu Nie
# License: MIT
from net_utils.utils import LossRecorder, LogBoard
from time import time
def train_epoch(cfg, epoch, trainer, dataloaders, log_board):
'''
train by epoch
:param cfg: configuration file
:param epoch: epoch id.
:param trainer: specific trainer for networks
:param dataloaders: dataloader for training and validation
:param log_board: tensorboard logger
:return:
'''
for phase in ['train', 'val']:
dataloader = dataloaders[phase].dataloader
sampler = dataloaders[phase].sampler
batch_size = cfg.config[phase]['batch_size']
loss_recorder = LossRecorder(batch_size)
# set mode
trainer.net.train(phase == 'train')
# set subnet mode
trainer.net.module.set_mode()
# set sampler epoch
if cfg.config['device']['distributed']:
sampler.set_epoch(epoch)
cfg.log_string('-' * 100)
cfg.log_string('Switch Phase to %s.' % (phase))
cfg.log_string('-'*100)
for iter, data in enumerate(dataloader):
if phase == 'train':
loss = trainer.train_step(data)
else:
loss = trainer.eval_step(data)
# visualize intermediate results.
if (iter % cfg.config['log']['vis_step']) == 0:
trainer.visualize_step(epoch, phase, iter, data)
loss_recorder.update_loss(loss)
if (iter % cfg.config['log']['print_step']) == 0:
cfg.log_string('Process: Phase: %s. Epoch %d: %d/%d. Current loss: %s.' % (phase, epoch, iter + 1, len(dataloader), str(loss)))
log_board.update(loss, cfg.config['log']['print_step'] * batch_size, phase)
# synchronize over all processes
loss_recorder.synchronize_between_processes()
cfg.log_string('=' * 100)
for loss_name, loss_value in loss_recorder.loss_recorder.items():
cfg.log_string('Currently the last %s loss (%s) is: %f' % (phase, loss_name, loss_value.avg))
cfg.log_string('=' * 100)
# # draw gradient hist.
# if phase == 'train':
# log_board.plot_gradients(trainer.net)
return loss_recorder.loss_recorder
def train(cfg, trainer, scheduler, checkpoint, train_loader, val_loader):
'''
train epochs for network
:param cfg: configuration file
:param scheduler: scheduler for optimizer
:param trainer: specific trainer for networks
:param checkpoint: network weights.
:param train_loader: dataloader for training
:param val_loader: dataloader for validation
:return:
'''
start_epoch = scheduler.last_epoch
total_epochs = cfg.config['train']['epochs']
min_eval_loss = checkpoint.get('min_loss')
dataloaders = {'train': train_loader, 'val': val_loader}
'''Load tensorboard'''
log_board = LogBoard(cfg)
for epoch in range(start_epoch, total_epochs):
cfg.log_string('-' * 100)
cfg.log_string('Epoch (%d/%s):' % (epoch + 1, total_epochs))
trainer.show_lr()
start = time()
eval_loss_recorder = train_epoch(cfg, epoch + 1, trainer, dataloaders, log_board)
eval_loss = trainer.eval_loss_parser(eval_loss_recorder)
scheduler.step()
cfg.log_string('Epoch (%d/%s) Time elapsed: (%f).' % (epoch + 1, total_epochs, time()-start))
# save checkpoint
checkpoint.register_modules(epoch=epoch, min_loss=eval_loss)
if ((epoch % cfg.config['log']['save_weight_step']) == 0) or (epoch == total_epochs - 1):
checkpoint.save('last_%d' % (epoch))
cfg.log_string('Saved the latest checkpoint.')
if epoch==0 or eval_loss<min_eval_loss:
checkpoint.save('best')
min_eval_loss = eval_loss
cfg.log_string('Saved the best checkpoint.')
cfg.log_string('=' * 100)
for loss_name, loss_value in eval_loss_recorder.items():
cfg.log_string('Currently the best val loss (%s) is: %f' % (loss_name, loss_value.avg))
cfg.log_string('=' * 100)