-
Notifications
You must be signed in to change notification settings - Fork 10
/
utils.py
36 lines (25 loc) · 1.09 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import random
import numpy as np
from IPython import embed
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0 and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
def collate_fn(batch):
max_len = max([len(f["input_ids"]) for f in batch])
input_ids = [f["input_ids"] + [0] * (max_len - len(f["input_ids"])) for f in batch]
input_mask = [[1.0] * len(f["input_ids"]) + [0.0] * (max_len - len(f["input_ids"])) for f in batch]
labels = [f["labels"] for f in batch]
input_ids = torch.tensor(input_ids, dtype=torch.long)
input_mask = torch.tensor(input_mask, dtype=torch.float)
entity_pos = [f["entity_pos"] for f in batch]
hts = [f["hts"] for f in batch]
output = (input_ids, input_mask, labels, entity_pos, hts)
if 'sen_pos' in batch[0]:
sen_labels = [f['sen_labels'] for f in batch] # one for each pair, each element: [ps, sen_num]
cls_pos = [ f['sen_pos'] for f in batch]
output = output + (sen_labels, cls_pos)
return output