forked from hqli/face_recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepID_deploy.prototxt
168 lines (162 loc) · 2.43 KB
/
deepID_deploy.prototxt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
############################# DATA Layer #############################
name: "face_train_val"
input: "data_1"
#input_dim: 6000
input_dim: 1
input_dim: 3
input_dim: 64
input_dim: 64
############################# CONV NET 1 #############################
layer {
name: "conv1_1"
type: "Convolution"
bottom: "data_1"
top: "conv1_1"
convolution_param {
num_output: 20
kernel_size: 4
stride: 1
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "norm1_1"
type: "LRN"
bottom: "conv1_1"
top: "norm1_1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1_1"
type: "Pooling"
bottom: "norm1_1"
top: "pool1_1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1_1"
top: "conv2_1"
convolution_param {
num_output: 40
kernel_size: 3
group: 2
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "norm2_1"
type: "LRN"
bottom: "conv2_1"
top: "norm2_1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2_1"
type: "Pooling"
bottom: "norm2_1"
top: "pool2_1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2_1"
top: "conv3_1"
convolution_param {
num_output: 60
kernel_size: 3
}
}
layer {
name: "pool3_1"
type: "Pooling"
bottom: "conv3_1"
top: "pool3_1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3_1"
top: "conv4_1"
convolution_param {
num_output: 80
kernel_size: 2
stride: 2
}
}
layer{
name:"flatten_pool3_1"
type:"Flatten"
bottom:"pool3_1"
top:"flatten_pool3_1"
}
layer{
name:"flatten_conv4_1"
type:"Flatten"
bottom:"conv4_1"
top:"flatten_conv4_1"
}
layer{
name:"contact_conv"
type:"Concat"
bottom:"flatten_conv4_1"
bottom:"flatten_pool3_1"
top:"contact_conv"
}
layer {
name: "deepid_1"
type: "InnerProduct"
bottom: "contact_conv"
top: "deepid_1"
inner_product_param {
num_output: 160
}
}
layer {
name: "relu6_1"
type: "ReLU"
bottom: "deepid_1"
top: "deepid_1"
}
layer {
name: "drop6_1"
type: "Dropout"
bottom: "deepid_1"
top: "deepid_1"
dropout_param {
dropout_ratio: 0.5
}
}