-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain_scalability_1.py
65 lines (53 loc) · 2.34 KB
/
main_scalability_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import numpy as np
from experiments.scenarios import make_env
from rls import arglist
# proposed (gumbel)
# from rls.model.ac_network_multi_gumbel import ActorNetwork, CriticNetwork
# from rls.agent.multiagent.ddpg_gumbel_fix import Trainer
# from experiments.run import run, run_test
# proposed (gumbel) + model
from rls.model.ac_network_model_multi_gumbel import ActorNetwork, CriticNetwork
from rls.agent.multiagent.model_ddpg_gumbel_fix import Trainer
from experiments.run import run, run_test
# BIC (gumbel)
# from rls.model.ac_network_multi_gumbel_BIC import ActorNetwork, CriticNetwork
# from rls.agent.multiagent.BIC_gumbel_fix import Trainer
# from experiments.run_BIC import run, run_test
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
scenarios = ['simple_spread', 'simple_reference', 'simple_speaker_listener',
'fullobs_collect_treasure', 'multi_speaker_listener']
TEST_ONLY = False
scenario_name = 'simple_spread'
for n_agent in [6, 9, 12]:
arglist.actor_learning_rate = 1e-2
arglist.critic_learning_rate = 1e-2
for cnt in range(5):
# scenario_name = 'simple_spread'
env = make_env(scenario_name, n=n_agent, benchmark=False, discrete_action=True,
local_observation=True)
seed = cnt + 12345678
# print(env.observation_space)
env.seed(seed)
torch.cuda.empty_cache()
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
dim_obs = env.observation_space[0].shape[0]
if hasattr(env.action_space[0], 'high'):
dim_action = env.action_space[0].high + 1
dim_action = dim_action.tolist()
action_type = 'MultiDiscrete'
else:
dim_action = env.action_space[0].n
action_type = 'Discrete'
actor = ActorNetwork(input_dim=dim_obs, out_dim=dim_action)
critic = CriticNetwork(input_dim=dim_obs + np.sum(dim_action), out_dim=1)
if TEST_ONLY:
arglist.num_episodes = 100
run_test(env, actor, critic, Trainer, scenario_name, action_type, cnt=cnt)
else:
scenario_name_scale = scenario_name + '_n_agent_' + str(n_agent) + '_'
run(env, actor, critic, Trainer, scenario_name_scale, action_type, cnt=cnt)