-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjuanfit.py
1630 lines (1410 loc) · 80.8 KB
/
juanfit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
'''
File Name: juanfit.py
Author: Yingjie Zhu
Institute: University of Michigan
Email: yjzhu(at)umich(dot)edu
Date create: 07/20/2021
Date Last Modified: 2/1/2023
Python Version: 3.8
Statues: In development
Version: 0.0.3
Description: This is a naive and dirty python script
to perform single/multiple Gaussian fitting to the
spectral lines.
'''
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib import ticker
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator,
AutoLocator, MaxNLocator)
from IPython.display import display, Math
from numpy.lib.function_base import delete
import emcee
import scipy
from scipy.special import wofz, voigt_profile
from scipy.optimize import curve_fit
from num2tex import num2tex
from warnings import warn
import sys
import multiprocessing as mp
import copy
import astropy.constants as const
from astropy.visualization import ZScaleInterval, ImageNormalize, LogStretch, AsymmetricPercentileInterval,\
ManualInterval, SqrtStretch
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
#plot setting
from matplotlib import rcParams, rc_context
rc_context_dict = {'text.usetex': True,
'font.family': 'serif',
'axes.linewidth': 2,
'xtick.major.width': 1,
'xtick.major.size': 4,
'xtick.minor.width': 1,
'xtick.minor.size':2,
'ytick.major.width': 1,
'ytick.major.size': 4,
'ytick.minor.width': 1,
'ytick.minor.size': 2,
'text.latex.preamble': r'\usepackage[T1]{fontenc} \usepackage{amsmath} ' + \
r'\usepackage{siunitx} \sisetup{detect-all=true}'}
# rcParams['text.usetex'] = True
# rcParams['font.family'] = 'serif'
# rcParams['axes.linewidth'] = 2
# rcParams['xtick.major.width'] = 1
# rcParams['xtick.major.size'] = 4
# rcParams['xtick.minor.width'] = 1
# rcParams['xtick.minor.size'] =2
# rcParams['ytick.major.width'] = 1
# rcParams['ytick.major.size'] = 4
# rcParams['ytick.minor.width'] = 1
# rcParams['ytick.minor.size'] = 2
# rcParams['text.latex.preamble'] = r'\usepackage[T1]{fontenc} \usepackage{amsmath} ' + \
# r'\usepackage{siunitx} \sisetup{detect-all=true}'
class SpectrumFitSingle:
'''
SpectrumFitSingle performs single/multiple Gaussian fitting
to the input spectra.
'''
def __init__(self, data, wvl, line_number=None, line_wvl_init=None, int_max_init=None, \
fwhm_init=None, int_cont_init=None, err=None, err_percent=None, same_width=False, \
stray_light=False, stray_wvl_init=None, stray_int_total=None, stray_fwhm=None, \
mask=None,custom_func=None,custom_init=None) -> None:
'''
Initialize the SpectrumFitSingle class.
Parameters
----------
data : 1-D array
Input 1-D spectra (intensity) to fit.
wvl : 1-D array
1-D wavelength grid of the spectra.
line_number: integer
The desired number of lines to fit.
line_wvl_init : scalar or 1-D array
Initial wavelength(s) of the spectral line core(s).
int_max_init : scalar or 1-D array
Initial value(s) of the peak intensity.
fwhm_init : scalar or 1-D array
Initial value(s) of the full width at half maximum (FWHM).
err : 1-D array , optional
Errors in the intensity at different wavelengths. If provided,
will be used to calculate the likelihood function. Default is None.
err_percent : scalar or 1-D array (0-100), optional
If provided, multiply this percentage to the data to create the errors used
in fittings. Conflict with the err parameter. Default is None.
same_width : bool or a list of bool, optional
If True, forces the fitted spectral lines have the same width. If provided
as a list of bools, only forces the spectral lines corresponding to True value
have the same width in the fitting. Default is False.
stray_light : bool, optional
If True, adds the stray light profile to the fitting. Default is False.
stray_wvl_init : scalar or 1-D array, optional
Initial wavelength(s) of the stray light line core(s). Default is None.
stray_int_total: scalar or 1-D array, optional
Integrated intensity of the stray light profile(s). Default is None.
stray_fwhm: scalar or 1-D array, optional
Full width at half maximum (FWHM) of the stray light profile(s).
Default is None.
mask: [N,2] array, optional
If provided, will mask the data between the N intervals in the fitting.
For example, [[2,4],[10,12]] will mask the data points within [2,4] and
[10,12]. Default is None.
custom_func : function, optional
If provided, fit the spectra using this custom function. Default is None.
custom_init : scalar, 1-D array like, optional
Initial values for the custom fitting function.
'''
#input parameters
self.data = data
self.wvl = wvl
if err_percent is None:
self.err = err
else:
if err is None:
self.err = self.data*err_percent/100
else:
warn("Both the err and err_percent parameters are used. Use err instead of err_percent.")
self.err = err
self.mask = mask
self.stray_light = stray_light
self.stray_wvl_init = stray_wvl_init
self.stray_int_total = stray_int_total
self.stray_fwhm = stray_fwhm
#instance properties
self.shape = data.shape
self.custom_func = custom_func
self.custom_init = custom_init
#Create masked wavelength, intensity, and error by deleting the masked
#values, since scipy.curvefit does not support masked arrays...
if mask is None:
self.wvl_tofit = self.wvl
self.data_tofit = self.data
self.err_tofit = self.err
else:
delete_index_all = []
for ii in range(len(self.mask)):
delete_index = np.where((self.wvl>=self.mask[ii][0]) & (self.wvl<=self.mask[ii][1]))[0]
delete_index_all = delete_index_all + delete_index.tolist()
self.wvl_tofit = np.delete(self.wvl,delete_index_all)
self.data_tofit = np.delete(self.data,delete_index_all)
if self.err is not None:
self.err_tofit = np.delete(self.err,delete_index_all)
else:
self.err_tofit = self.err
#If the custom fitting function is not provided, read the initial
#values for the embedded multi-gaussian functions. And create the
#Chi2 fitted parameters.
if self.custom_func is None:
self.line_number = line_number
self.line_wvl_init = np.array(line_wvl_init)
self.int_max_init = np.array(int_max_init)
self.fwhm_init = np.array(fwhm_init)
self.same_width = same_width
if int_cont_init is None:
self.int_cont_init = np.min((np.mean(self.data[:2]),np.mean(self.data[-2:])))
else:
self.int_cont_init = int_cont_init
#fitted parameters
self.line_wvl_fit = np.zeros(self.line_number)
self.line_wvl_err = np.zeros(self.line_number)
self.int_total_fit = np.zeros(self.line_number)
self.int_total_err = np.zeros(self.line_number)
if type(same_width) is list:
self.fwhm_fit = np.zeros(self.line_number)
self.fwhm_err = np.zeros(self.line_number)
self.line_same_width_index = np.where(self.same_width)[0]
elif same_width is True:
self.fwhm_fit = np.float64(0.0)
self.fwhm_err = np.float64(0.0)
else:
self.fwhm_fit = np.zeros(self.line_number)
self.fwhm_err = np.zeros(self.line_number)
self.int_cont_fit = np.float64(0.0)
self.int_cont_err = np.float64(0.0)
if self.line_number == 1:
self.int_max_init = np.max(self.data_tofit)
else:
self.int_max_init = self.int_max_init*np.max(self.data_tofit)/np.max(self.int_max_init)
else:
self.custom_fit = np.zeros_like(custom_init)
self.custom_err = np.zeros_like(custom_init)
def run_lse(self,ignore_err=False,absolute_sigma=True,maxfev=2800):
'''
Performs least square estimation (Chi square fitting)
to the spectral line(s).
Parameters
----------
ignore_err : bool, optional
If True, ignores the input error. Default is False.
absolute_sigma: bool, optional
If True, the errors have the same unit as data. Default is True.
'''
if ignore_err is True:
err_lse = None
else:
err_lse = self.err_tofit
if (err_lse is None) and (absolute_sigma is True):
absolute_sigma = False
warn("No input errors, absolute_sigma=False will be used in the Chi2 fitting.")
if self.stray_light is False:
if self.custom_func is None:
if type(self.same_width) is list:
new_fwhm_init = np.concatenate((np.delete(self.fwhm_init,self.line_same_width_index),
np.average(self.fwhm_init[self.line_same_width_index])),
axis=None)
popt = np.concatenate((self.line_wvl_init,
self.int_max_init*np.sqrt(2.*np.pi)*self.fwhm_init/2.355,
new_fwhm_init,self.int_cont_init),axis = None)
else:
popt = np.concatenate((self.line_wvl_init,
self.int_max_init*np.sqrt(2.*np.pi)*self.fwhm_init/2.355,
self.fwhm_init,self.int_cont_init),axis = None)
self.dof = len(self.wvl_tofit) - len(popt)
if type(self.same_width) is list:
popt, pcov = curve_fit(self.multi_gaussian_mixture_width, self.wvl_tofit, self.data_tofit,
p0=popt,sigma=err_lse,absolute_sigma=absolute_sigma,maxfev=maxfev)
self.line_wvl_fit = popt[:self.line_number]
self.int_total_fit = popt[self.line_number:self.line_number*2]
self.int_cont_fit = popt[-1]
perr = np.sqrt(np.diagonal(pcov))
self.line_wvl_err = perr[:self.line_number]
self.int_total_err = perr[self.line_number:self.line_number*2]
self.int_cont_err = perr[-1]
self.fwhm_fit = np.zeros(self.line_number)
self.fwhm_err = np.zeros(self.line_number)
fwhm_arg_index_cont = 0
for ii in range(self.line_number):
if self.same_width[ii] is True:
self.fwhm_fit[ii] = popt[-2]
self.fwhm_err[ii] = perr[-2]
else:
self.fwhm_fit[ii] = popt[self.line_number*2+fwhm_arg_index_cont]
self.fwhm_err[ii] = perr[self.line_number*2+fwhm_arg_index_cont]
fwhm_arg_index_cont += 1
elif self.same_width is True:
popt, pcov = curve_fit(self.multi_gaussian_same_width, self.wvl_tofit, self.data_tofit,
p0=popt,sigma=err_lse,absolute_sigma=absolute_sigma,maxfev=maxfev)
self.line_wvl_fit = popt[:self.line_number]
self.int_total_fit = popt[self.line_number:self.line_number*2]
self.fwhm_fit = popt[-2]
self.int_cont_fit = popt[-1]
perr = np.sqrt(np.diagonal(pcov))
self.line_wvl_err = perr[:self.line_number]
self.int_total_err = perr[self.line_number:self.line_number*2]
self.fwhm_err = perr[-2]
self.int_cont_err = perr[-1]
else:
popt, pcov = curve_fit(self.multi_gaussian_diff_width, self.wvl_tofit, self.data_tofit,
p0=popt,sigma=err_lse,absolute_sigma=absolute_sigma,maxfev=maxfev)
self.line_wvl_fit = popt[:self.line_number]
self.int_total_fit = popt[self.line_number:self.line_number*2]
self.fwhm_fit = popt[self.line_number*2:self.line_number*3]
self.int_cont_fit = popt[-1]
perr = np.sqrt(np.diagonal(pcov))
self.line_wvl_err = perr[:self.line_number]
self.int_total_err = perr[self.line_number:self.line_number*2]
self.fwhm_err = perr[self.line_number*2:self.line_number*3]
self.int_cont_err = perr[-1]
else:
self.dof = len(self.wvl_tofit) - len(self.custom_init)
popt, pcov = curve_fit(self.custom_func, self.wvl_tofit, self.data_tofit,
p0=self.custom_init,sigma=err_lse,absolute_sigma=absolute_sigma,maxfev=maxfev)
self.custom_fit = popt
self.custom_err = np.sqrt(np.diagonal(pcov))
else:
print("Fitting with stray light is not supported in this version.")
def run_HahnMC(self,ignore_err=False,n_chain=10000,cred_lvl=None,absolute_sigma=True,save_chain=False):
'''
Fit line profiles using the Monte-Carlo method described
in Hahn et al. 2012, ApJ, 753, 36.
Parameters
----------
ignore_err : bool, optional
If True, ignore the input error in fitting. Default is False.
n_chain : int, optional
The number of Monte Carlo iteration. Default is 10,000.
cred_lvl: None or integer or float between 0 - 100, optional
If None, calculate from standard deviation. If not None, retrieve uncertainty from
the credible levels. Default is None.
'''
self.run_lse(ignore_err=ignore_err,absolute_sigma=absolute_sigma)
if type(self.same_width) is list:
new_fwhm_fit = np.concatenate((np.delete(self.fwhm_fit,self.line_same_width_index),
np.average(self.fwhm_fit[self.line_same_width_index])),
axis=None)
p_fit = np.concatenate((self.line_wvl_fit,self.int_total_fit,new_fwhm_fit,
self.int_cont_fit),axis=None)
spec_fit = self.multi_gaussian_mixture_width(self.wvl_tofit,*p_fit)
elif self.same_width is True:
p_fit = np.concatenate((self.line_wvl_fit,self.int_total_fit,self.fwhm_fit,
self.int_cont_fit),axis=None)
spec_fit = self.multi_gaussian_same_width(self.wvl_tofit,*p_fit)
else:
p_fit = np.concatenate((self.line_wvl_fit,self.int_total_fit,self.fwhm_fit,
self.int_cont_fit),axis=None)
spec_fit = self.multi_gaussian_diff_width(self.wvl_tofit,*p_fit)
if self.err_tofit is None:
err_diff = np.abs(self.data_tofit - spec_fit)
else:
err_diff = np.maximum(self.err_tofit,np.abs(self.data_tofit - spec_fit))
random_err = np.zeros((n_chain,len(self.wvl_tofit)))
for ii in range(len(self.wvl_tofit)):
random_err[:,ii] = np.random.normal(0, err_diff[ii], n_chain)
if self.stray_light is False:
popt = np.concatenate((self.line_wvl_fit,self.int_total_fit,
self.fwhm_fit,self.int_cont_fit),axis = None)
else:
print("Fitting with stray light is not supported in this version.")
popt_chain = np.zeros((n_chain,popt.shape[0]))
if ignore_err is True: # no error
err_hmc = None
else:
err_hmc = err_diff
if type(self.same_width) is list:
for ii in range(n_chain):
popt_chain[ii,:], _ = curve_fit(self.multi_gaussian_mixture_width, self.wvl_tofit,
self.data_tofit+random_err[ii,:],p0=popt,sigma=err_hmc,
absolute_sigma=absolute_sigma)
popt_result = np.zeros_like(popt)
popt_err = np.zeros((2,popt.shape[0]))
for jj in range(popt.shape[0]):
if cred_lvl is not None:
mcmc_result = np.percentile(popt_chain[:, jj], [50-cred_lvl/2, 50, 50+cred_lvl/2])
residual = np.diff(mcmc_result)
popt_result[jj] = mcmc_result[1]
popt_err[:,jj] = np.array([residual[0],residual[1]])
else:
popt_result[jj] = np.percentile(popt_chain[:, jj],50)
popt_err[:,jj] = np.array([np.std(popt_chain[:, jj]),np.std(popt_chain[:, jj])])
self.line_wvl_fit_hmc = popt_result[:self.line_number]
self.int_total_fit_hmc = popt_result[self.line_number:self.line_number*2]
self.int_cont_fit_hmc = popt_result[-1]
self.line_wvl_err_hmc = popt_err[:,:self.line_number]
self.int_total_err_hmc = popt_err[:,self.line_number:self.line_number*2]
self.int_cont_err_hmc = popt_err[:,-1]
self.fwhm_fit_hmc = np.zeros(self.line_number)
self.fwhm_err_hmc = np.zeros((2,self.line_number))
fwhm_arg_index_cont = 0
for ii in range(self.line_number):
if self.same_width[ii] is True:
self.fwhm_fit_hmc[ii] = popt_result[-2]
self.fwhm_err_hmc[:,ii] = popt_err[:,-2]
else:
self.fwhm_fit_hmc[ii] = popt_result[self.line_number*2+fwhm_arg_index_cont]
self.fwhm_err_hmc[:,ii] = popt_err[:,self.line_number*2+fwhm_arg_index_cont]
fwhm_arg_index_cont += 1
elif self.same_width is True:
for ii in range(n_chain):
popt_chain[ii,:], _ = curve_fit(self.multi_gaussian_same_width, self.wvl_tofit,
self.data_tofit+random_err[ii,:],p0=popt,sigma=err_hmc,
absolute_sigma=absolute_sigma)
popt_result = np.zeros_like(popt)
popt_err = np.zeros((2,popt.shape[0]))
for jj in range(popt.shape[0]):
if cred_lvl is not None:
mcmc_result = np.percentile(popt_chain[:, jj], [50-cred_lvl/2, 50, 50+cred_lvl/2])
residual = np.diff(mcmc_result)
popt_result[jj] = mcmc_result[1]
popt_err[:,jj] = np.array([residual[0],residual[1]])
else:
popt_result[jj] = np.percentile(popt_chain[:, jj],50)
popt_err[:,jj] = np.array([np.std(popt_chain[:, jj]),np.std(popt_chain[:, jj])])
self.line_wvl_fit_hmc = popt_result[:self.line_number]
self.int_total_fit_hmc = popt_result[self.line_number:self.line_number*2]
self.fwhm_fit_hmc = popt_result[-2]
self.int_cont_fit_hmc = popt_result[-1]
self.line_wvl_err_hmc = popt_err[:,:self.line_number]
self.int_total_err_hmc = popt_err[:,self.line_number:self.line_number*2]
self.fwhm_err_hmc = popt_err[:,-2]
self.int_cont_err_hmc = popt_err[:,-1]
else:
for ii in range(n_chain):
popt_chain[ii,:], _ = curve_fit(self.multi_gaussian_diff_width, self.wvl_tofit,
self.data_tofit+random_err[ii,:],p0=popt,sigma=err_hmc,
absolute_sigma=absolute_sigma)
popt_result = np.zeros_like(popt)
popt_err = np.zeros((2,popt.shape[0]))
for jj in range(popt.shape[0]):
if cred_lvl is not None:
mcmc_result = np.percentile(popt_chain[:, jj], [50-cred_lvl/2, 50, 50+cred_lvl/2])
residual = np.diff(mcmc_result)
#print(type(np.array(mcmc[1])))
popt_result[jj] = mcmc_result[1]
popt_err[:,jj] = np.array([residual[0],residual[1]])
else:
popt_result[jj] = np.percentile(popt_chain[:, jj],50)
popt_err[:,jj] = np.array([np.std(popt_chain[:, jj]),np.std(popt_chain[:, jj])])
self.line_wvl_fit_hmc = popt_result[:self.line_number]
self.int_total_fit_hmc = popt_result[self.line_number:self.line_number*2]
self.fwhm_fit_hmc = popt_result[self.line_number*2:self.line_number*3]
self.int_cont_fit_hmc = popt_result[-1]
self.line_wvl_err_hmc = popt_err[:,:self.line_number]
self.int_total_err_hmc = popt_err[:,self.line_number:self.line_number*2]
self.fwhm_err_hmc = popt_err[:,self.line_number*2:self.line_number*3]
self.int_cont_err_hmc = popt_err[:,-1]
if save_chain:
self.HahnMC_chain = popt_chain
def get_fit_params(self,method="lse"):
if self.custom_func is not None:
return self.custom_fit, self.custom_err
elif method == "hmc":
return {"wvl_fit": self.line_wvl_fit_hmc,
"int_fit": self.int_total_fit_hmc,
"fwhm_fit": self.fwhm_fit_hmc,
"cont_fit": self.int_cont_fit_hmc,
"wvl_err": self.line_wvl_err_hmc,
"int_err": self.int_total_err_hmc,
"fwhm_err": self.fwhm_err_hmc,
"cont_err": self.int_cont_err_hmc,
"method": method}
elif method == "lse":
return {"wvl_fit": self.line_wvl_fit,
"int_fit": self.int_total_fit,
"fwhm_fit": self.fwhm_fit,
"cont_fit": self.int_cont_fit,
"wvl_err": self.line_wvl_err,
"int_err": self.int_total_err,
"fwhm_err": self.fwhm_err,
"cont_err": self.int_cont_err,
"method": method}
else:
sys.exit("No such method.")
def get_fit_profile(self,method="lse"):
fit_params = self.get_fit_params(method=method)
if self.custom_func is not None:
spec_fit = self.custom_func(self.wvl,*self.custom_fit)
res_fit = self.data - self.custom_func(self.wvl,*self.custom_fit)
elif self.same_width is True:
p_fit = np.concatenate((fit_params["wvl_fit"],fit_params["int_fit"],fit_params["fwhm_fit"],
fit_params["cont_fit"]),axis=None)
spec_fit = self.multi_gaussian_same_width(self.wvl,*p_fit)
res_fit = self.data - self.multi_gaussian_same_width(self.wvl,*p_fit)
else:
p_fit = np.concatenate((fit_params["wvl_fit"],fit_params["int_fit"],fit_params["fwhm_fit"],
fit_params["cont_fit"]),axis=None)
spec_fit = self.multi_gaussian_diff_width(self.wvl,*p_fit)
res_fit = self.data - self.multi_gaussian_diff_width(self.wvl,*p_fit)
return spec_fit, res_fit
def plot(self, plot_fit=True,plot_params=True, plot_mcmc=False,plot_hmc=False,
color_style="Red",plot_title=None,xlabel=None,ylabel=None,xlim=None,
line_caption=None,figsize_scale=1,save_fig=False,
params_prec = {"int":2,"wvl":1,"fwhm":2,"cont":1},
save_fname="./fit_result.pdf",save_fmt="pdf",save_dpi=300):
'''
Plot the input spectra and fitting results.
Parameters
----------
plot_fit : bool, optional
If True, plots the fitting results as well. Default is True.
plot_params : bool, optional
If True, plot the fitted parameters by the figure. Default is True.
plot_mcmc : bool, optional
If True, plots the MCMC results. Default is False.
plot_hmc: bool, optional
If True, plots the Monte Carlo fitting results using the method described in
Hahn et al. 2012, ApJ, 753, 36. Default is False.
xlim : [left limit, right_lim], optional
If provided, set the left and right limit of the x-axis. Default is None.
color_style : {"Red","Yellow","Green","Blue","Purple"}, optional
Color style of the plot. Default is "Red".
plot_title : string, optional
Set to be the title of the plot. Default is None.
xlabel: string, optional
Set to be the label of the x-axis. Default is None.
ylabel: string, optional
Set to be the label of the y-axis. Default is None.
save_fig: bool, optional
If True, save the plot to local directory. Default is False.
save_fname: string, optional
The filename of the saved plot. Default is "./fit_result.pdf"
save_fmt: string, optional
Format of the saved file, e.g., "pdf", "png", "svg"... Default is "pdf".
save_dpi: int, optional
Dots per inch (DPI) of the saved plot. Default is 300.
'''
with rc_context(rc_context_dict):
if (self.custom_func is not None) and (plot_params is True):
warn("Use custom function in the fitting. Will not plot fitted parameters.")
plot_params = False
self.wvl_plot = np.linspace(self.wvl[0],self.wvl[-1],5*len(self.wvl))
if (plot_fit is True) and (plot_params is True):
fig = plt.figure(figsize=((8+3*np.ceil(self.line_number/2))*figsize_scale,8*figsize_scale),
constrained_layout=True)
gs_fig = fig.add_gridspec(1, 2,figure=fig,width_ratios=[8., 3*np.ceil(self.line_number/2)])
gs_plot = gs_fig[0].subgridspec(2, 1,height_ratios=[5,2])
ax = fig.add_subplot(gs_plot[0])
ax_res = fig.add_subplot(gs_plot[1])
elif (plot_fit is True) and (plot_params is False):
fig = plt.figure(figsize=(8*figsize_scale,8*figsize_scale))
gs_plot = fig.add_gridspec(2, 1,height_ratios=[5,2])
ax = fig.add_subplot(gs_plot[0])
ax_res = fig.add_subplot(gs_plot[1])
else:
fig, ax = plt.subplots(figsize=(8*figsize_scale,6*figsize_scale),constrained_layout=True)
ax.tick_params(which="both",labelsize=18,right=True,top=True)
#ax.set_xlabel("Wavelength",fontsize=18)
if ylabel is None:
ax.set_ylabel("Intensity",fontsize=18)
else:
ax.set_ylabel(ylabel,fontsize=18)
ax.tick_params(which="major",width=1.2,length=8,direction="in")
ax.tick_params(which="minor",width=1.2,length=4,direction="in")
ax.xaxis.set_minor_locator(ticker.AutoMinorLocator(5))
ax.yaxis.set_minor_locator(ticker.AutoMinorLocator(5))
ax.yaxis.get_offset_text().set_fontsize(18)
ax.yaxis.get_offset_text().set_y(1.05)
#print("Wavelength:",self.line_wvl_fit)
#print("Width:",self.fwhm_fit)
#print("Width Error:",self.fwhm_err)
if color_style == "Red":
colors = ["#E87A90","#FEDFE1","black","#E9002D","#DBD0D0"]
elif color_style == "Green":
colors = ["#00896C","#A8D8B9","black","#33A6B8","#DBD0D0"]
elif color_style == "Yellow":
colors = ["#FFBA84","#FAD689","black","#FC9F4D","#DBD0D0"]
elif color_style == "Blue":
colors = ["#3A8FB7","#A5DEE4","black","#58B2DC","#DBD0D0"]
elif color_style == "Purple":
colors = ["#8F77B5","#B28FCE","black","#6A4C9C","#DBD0D0"]
if self.err is None:
ln1, = ax.step(self.wvl,self.data,where="mid",color=colors[0],label = r"$I_{\rm obs}$",lw=2,zorder=15)
else:
ln1 = ax.errorbar(self.wvl,self.data,yerr = self.err,ds='steps-mid',color=colors[0],capsize=2,
label = r"$I_{\rm obs}$",lw=2,zorder=15)
ax.fill_between(self.wvl,np.ones_like(self.wvl)*np.min(self.data),self.data,
step='mid',color=colors[1],alpha=0.6)
if self.mask is not None:
for ii, mask_ in enumerate(self.mask):
ax.axvspan(mask_[0],mask_[1],color=colors[4],alpha=0.4)
if plot_fit is True:
if self.custom_func is not None:
pass
elif plot_hmc is True:
line_wvl_plot = self.line_wvl_fit_hmc
int_total_plot = self.int_total_fit_hmc
fwhm_plot = self.fwhm_fit_hmc
int_cont_plot = self.int_cont_fit_hmc
line_wvl_err_plot = self.line_wvl_err_hmc
int_total_err_plot = self.int_total_err_hmc
fwhm_err_plot = self.fwhm_err_hmc
int_cont_err_plot = self.int_cont_err_hmc
int_total_text_fmt = r'$I_0 = {{{:#.{int_data_prec}g}}}' + \
r'_{{-{:#.{int_err_prec}g}}}^{{+{:#.{int_err_prec}g}}}$'
line_wvl_text_fmt = r'$\lambda_0 = {{{:#.{wvl_data_prec}g}}}' + \
r'_{{-{:#.{wvl_err_prec}g}}}^{{+{:#.{wvl_err_prec}g}}}$'
fwhm_text_fmt = r'$\Delta \lambda = {{{:#.{fwhm_data_prec}g}}}' + \
r'_{{-{:#.{fwhm_err_prec}g}}}^{{+{:#.{fwhm_err_prec}g}}}$'
int_cont_text_fmt = r'$I_{{\rm bg}} = {{{:#.{cont_data_prec}g}}}' + \
r'_{{-{:#.{cont_err_prec}g}}}^{{+{:#.{cont_err_prec}g}}}$'
else:
line_wvl_plot = self.line_wvl_fit
int_total_plot = self.int_total_fit
fwhm_plot = self.fwhm_fit
int_cont_plot = self.int_cont_fit
line_wvl_err_plot = self.line_wvl_err
int_total_err_plot = self.int_total_err
fwhm_err_plot = self.fwhm_err
int_cont_err_plot = self.int_cont_err
int_total_text_fmt = r'$I_0 = {:#.{int_data_prec}g}\pm{:#.{int_err_prec}g}$'
line_wvl_text_fmt = r'$\lambda_0 = {:#.{wvl_data_prec}g}\pm{:#.{wvl_err_prec}g}$'
fwhm_text_fmt = r'$\Delta \lambda = {:#.{fwhm_data_prec}g}\pm{:#.{fwhm_err_prec}g}$'
int_cont_text_fmt = r'$I_{{\rm bg}} = {:#.{cont_data_prec}g}\pm{:#.{cont_err_prec}g}$'
if self.custom_func is not None:
spec_fit = self.custom_func(self.wvl_plot,*self.custom_fit)
res_fit = self.data_tofit - self.custom_func(self.wvl_tofit,*self.custom_fit)
elif self.same_width is True:
p_fit = np.concatenate((line_wvl_plot,int_total_plot,fwhm_plot,
int_cont_plot),axis=None)
spec_fit = self.multi_gaussian_same_width(self.wvl_plot,*p_fit)
res_fit = self.data_tofit - self.multi_gaussian_same_width(self.wvl_tofit,*p_fit)
else:
p_fit = np.concatenate((line_wvl_plot,int_total_plot,fwhm_plot,
int_cont_plot),axis=None)
spec_fit = self.multi_gaussian_diff_width(self.wvl_plot,*p_fit)
res_fit = self.data_tofit - self.multi_gaussian_diff_width(self.wvl_tofit,*p_fit)
ln2, = ax.plot(self.wvl_plot,spec_fit,color=colors[2],ls="-",label = r"$I_{\rm fit}$",lw=2,
zorder=16,alpha=0.7)
if self.custom_func is None:
if self.line_number > 1:
if self.same_width is True:
for jj in range(self.line_number):
line_profile = gaussian(self.wvl_plot, line_wvl_plot[jj],
int_total_plot[jj], fwhm_plot) \
+ int_cont_plot
ax.plot(self.wvl_plot,line_profile,color=colors[3],ls="--",lw=2,alpha=0.8)
else:
for jj in range(self.line_number):
line_profile = gaussian(self.wvl_plot, line_wvl_plot[jj],
int_total_plot[jj], fwhm_plot[jj]) \
+ int_cont_plot
ax.plot(self.wvl_plot,line_profile,color=colors[3],ls="--",lw=2,alpha=0.8)
if self.err is None:
ax_res.scatter(self.wvl_tofit,res_fit,marker="o",s=15,color=colors[3])
else:
ax_res.errorbar(self.wvl_tofit,res_fit,self.err_tofit,ds='steps-mid',color=colors[3],capsize=3,
lw=2,ls="none",marker="o",markersize=5)
chi2_fit = np.sum((res_fit/self.err_tofit)**2)/self.dof
ax_res.text(0.98,0.9,r"$\chi^2 = {:.1f}$".format(chi2_fit),fontsize=18,
ha="right",va="top",transform=ax_res.transAxes)
ax_res.axhline(0,ls="--",lw=2,color="#91989F",alpha=0.7)
if xlabel is None:
ax_res.set_xlabel(r"$\textrm{Wavelength}$",fontsize=18)
else:
ax_res.set_xlabel(xlabel,fontsize=18)
ax_res.set_ylabel(r"$r$",fontsize=18)
ax_res.tick_params(which="both",labelsize=18,top=True,right=True)
ax_res.tick_params(which="major",width=1.2,length=8,direction="in")
ax_res.tick_params(which="minor",width=1.2,length=4,direction="in")
ax_res.xaxis.set_minor_locator(ticker.AutoMinorLocator(5))
ax_res.yaxis.set_minor_locator(ticker.AutoMinorLocator(5))
if xlim is not None:
ax_res.set_xlim(xlim)
if self.mask is not None:
for ii, mask_ in enumerate(self.mask):
ax_res.axvspan(mask_[0],mask_[1],color=colors[4],alpha=0.4)
if xlim is not None:
ax.set_xlim(xlim)
if plot_title is not None:
ax.set_title(plot_title,fontsize=18)
if (plot_params and plot_fit) is True:
gs_text = gs_fig[1].subgridspec(2, 1,height_ratios=[5,2])
text_ncol = np.ceil(self.line_number/2)
ax_text = fig.add_subplot(gs_text[0])
ax_text.axis("off")
if plot_mcmc or plot_hmc:
for ii in range(self.line_number):
int_data_prec = np.ceil(np.log10(np.abs(int_total_plot[ii]))).astype("int") - \
np.min(np.ceil(np.log10(int_total_err_plot[:,ii]))).astype("int") + params_prec["int"]
ax_text.text(0.05+(ii//2)/text_ncol,0.87-(ii%2)*0.45,int_total_text_fmt.format(num2tex(int_total_plot[ii]),
num2tex(int_total_err_plot[0,ii]),num2tex(int_total_err_plot[1,ii]),int_data_prec = int_data_prec,
int_err_prec = params_prec["int"]),ha = 'left',va = 'center',
color = 'black',fontsize = 18,linespacing=1.5,transform=ax_text.transAxes)
wvl_data_prec = np.ceil(np.log10(np.abs(line_wvl_plot[ii]))).astype("int") - \
np.min(np.ceil(np.log10(line_wvl_err_plot[:,ii])).astype("int")) + params_prec["wvl"]
ax_text.text(0.05+(ii//2)/text_ncol,0.78-(ii%2)*0.45,line_wvl_text_fmt.format(num2tex(line_wvl_plot[ii]),
num2tex(line_wvl_err_plot[0,ii]),num2tex(line_wvl_err_plot[1,ii]),wvl_data_prec = wvl_data_prec,
wvl_err_prec = params_prec["wvl"]),ha = 'left',va = 'center',
color = 'black',fontsize = 18,linespacing=1.5,transform=ax_text.transAxes)
if self.same_width is True:
fwhm_data_prec = np.ceil(np.log10(np.abs(fwhm_plot))).astype("int") - \
np.min(np.ceil(np.log10(fwhm_err_plot)).astype("int")) + params_prec["fwhm"]
ax_text.text(0.05+(ii//2)/text_ncol,0.69-(ii%2)*0.45,fwhm_text_fmt.format(num2tex(fwhm_plot),
num2tex(fwhm_err_plot[0]),num2tex(fwhm_err_plot[1]),fwhm_data_prec = fwhm_data_prec,
fwhm_err_prec = params_prec["fwhm"]),ha = 'left',va = 'center',
color = 'black',fontsize = 18,linespacing=1.5,transform=ax_text.transAxes)
else:
fwhm_data_prec = np.ceil(np.log10(np.abs(fwhm_plot[ii]))).astype("int") - \
np.min(np.ceil(np.log10(fwhm_err_plot[:,ii]))).astype("int") + params_prec["fwhm"]
ax_text.text(0.05+(ii//2)/text_ncol,0.69-(ii%2)*0.45,fwhm_text_fmt.format(num2tex(fwhm_plot[ii]),
num2tex(fwhm_err_plot[0,ii]),num2tex(fwhm_err_plot[1,ii]),fwhm_data_prec = fwhm_data_prec,
fwhm_err_prec = params_prec["fwhm"]),ha = 'left',va = 'center',
color = 'black',fontsize = 18,linespacing=1.5,transform=ax_text.transAxes)
cont_data_prec = np.ceil(np.log10(np.abs(int_cont_plot))).astype("int") - \
np.min(np.ceil(np.log10(int_cont_err_plot))).astype("int") + params_prec["cont"]
ax_text.text(0.05+(ii//2)/text_ncol,0.60-(ii%2)*0.45,int_cont_text_fmt.format(num2tex(int_cont_plot),
num2tex(int_cont_err_plot[0]),num2tex(int_cont_err_plot[1]),cont_data_prec = cont_data_prec,
cont_err_prec = params_prec["cont"]),ha = 'left',va = 'center',
color = 'black',fontsize = 18,linespacing=1.5,transform=ax_text.transAxes)
else:
for ii in range(self.line_number):
int_data_prec = np.ceil(np.log10(np.abs(int_total_plot[ii]))).astype("int") - \
np.ceil(np.log10(int_total_err_plot[ii])).astype("int") + params_prec["int"]
ax_text.text(0.05+(ii//2)/text_ncol,0.87-(ii%2)*0.45,int_total_text_fmt.format(num2tex(int_total_plot[ii]),
num2tex(int_total_err_plot[ii]),int_data_prec = int_data_prec,int_err_prec = params_prec["int"]),ha = 'left',va = 'center',
color = 'black',fontsize = 18,linespacing=1.5,transform=ax_text.transAxes)
wvl_data_prec = np.ceil(np.log10(np.abs(line_wvl_plot[ii]))).astype("int") - \
np.ceil(np.log10(line_wvl_err_plot[ii])).astype("int") + params_prec["wvl"]
ax_text.text(0.05+(ii//2)/text_ncol,0.78-(ii%2)*0.45,line_wvl_text_fmt.format(num2tex(line_wvl_plot[ii]),
num2tex(line_wvl_err_plot[ii]),wvl_data_prec = wvl_data_prec,wvl_err_prec = params_prec["wvl"]),ha = 'left',va = 'center',
color = 'black',fontsize = 18,linespacing=1.5,transform=ax_text.transAxes)
if self.same_width is True:
fwhm_data_prec = np.ceil(np.log10(np.abs(fwhm_plot))).astype("int") - \
np.ceil(np.log10(fwhm_err_plot)).astype("int") + params_prec["fwhm"]
ax_text.text(0.05+(ii//2)/text_ncol,0.69-(ii%2)*0.45,fwhm_text_fmt.format(num2tex(fwhm_plot),
num2tex(fwhm_err_plot),fwhm_data_prec = fwhm_data_prec,fwhm_err_prec = params_prec["fwhm"]),ha = 'left',va = 'center',
color = 'black',fontsize = 18,linespacing=1.5,transform=ax_text.transAxes)
else:
fwhm_data_prec = np.ceil(np.log10(np.abs(fwhm_plot[ii]))).astype("int") - \
np.ceil(np.log10(fwhm_err_plot[ii])).astype("int") + params_prec["fwhm"]
ax_text.text(0.05+(ii//2)/text_ncol,0.69-(ii%2)*0.45,fwhm_text_fmt.format(num2tex(fwhm_plot[ii]),
num2tex(fwhm_err_plot[ii]),fwhm_data_prec = fwhm_data_prec,fwhm_err_prec = params_prec["fwhm"]),ha = 'left',va = 'center',
color = 'black',fontsize = 18,linespacing=1.5,transform=ax_text.transAxes)
cont_data_prec = np.ceil(np.log10(np.abs(int_cont_plot))).astype("int") - \
np.ceil(np.log10(int_cont_err_plot)).astype("int") + params_prec["cont"]
ax_text.text(0.05+(ii//2)/text_ncol,0.60-(ii%2)*0.45,int_cont_text_fmt.format(num2tex(int_cont_plot),
num2tex(int_cont_err_plot),cont_data_prec = cont_data_prec,cont_err_prec = params_prec["cont"]),ha = 'left',va = 'center',
color = 'black',fontsize = 18,linespacing=1.5,transform=ax_text.transAxes)
if self.line_number > 1:
if line_caption is None:
line_caption = []
for ii in range(self.line_number):
line_caption.append(r"\textbf{\textsc{"+num_to_roman(ii+1,uppercase=False)+r"}}")
for ii in range(self.line_number):
ax_text.text(0.05+(ii//2)/text_ncol,0.95-(ii%2)*0.45,line_caption[ii],
ha = 'left',va = 'center',color = 'black',fontsize = 18,linespacing=1.5,
transform=ax_text.transAxes)
ax_text.axhline(0.915-(ii%2)*0.45,xmin=0.05+(ii//2)/text_ncol,xmax=(ii//2+0.8)/text_ncol,color="#787878",alpha=0.7,lw=4)
if self.same_width is True:
ax.text(self.line_wvl_fit[ii],2.355*self.int_total_fit[ii]/self.fwhm_fit/np.sqrt(2*np.pi)+\
0.05*np.diff(ax.get_ylim()) + self.int_cont_fit,line_caption[ii],
ha = 'center',va = 'bottom',color = colors[3],fontsize = 18,linespacing=1.5)
else:
ax.text(self.line_wvl_fit[ii],2.355*self.int_total_fit[ii]/self.fwhm_fit[ii]/np.sqrt(2*np.pi)+\
0.05*np.diff(ax.get_ylim()) + self.int_cont_fit,line_caption[ii],
ha = 'center',va = 'bottom',color = colors[3],fontsize = 18,linespacing=1.5)
ax.set_ylim(top=ax.get_ylim()[1]*1.07)
else:
if line_caption is not None:
ax_text.text(0.05+(ii//2)/text_ncol,0.95-(ii%2)*0.45,line_caption,
ha = 'left',va = 'center',color = 'black',fontsize = 18,linespacing=1.5,
transform=ax_text.transAxes)
if save_fig is True:
plt.savefig(fname=save_fname,format=save_fmt,dpi=save_dpi)
plt.show()
return ax
def multi_gaussian_same_width(self,wvl,*args):
'''
Generate the spectra which consists of multiple Gaussian spectral lines
with the same width.
Parameters
----------
wvl : 1-D array
Wavelength points of the spectra.
*args :
Parameters of the Gaussian profiles, which follows the order:
wvl_line1, wvl_line2, ..., int_total_line1, int_total_line2, ...,
fwhm_all_line, int_cont
'''
spec_syn = np.zeros_like(wvl)
for ii in range(self.line_number):
spec_syn = spec_syn \
+ gaussian(wvl,line_wvl=args[ii],
int_total=args[ii + self.line_number],
fwhm=args[-2])
spec_syn = spec_syn + args[-1]
return spec_syn
def multi_gaussian_diff_width(self,wvl,*args):
'''
Generate the spectra which consists of multiple Gaussian spectral lines
with different widths.
Parameters
----------
wvl : 1-D array
Wavelength points of the spectra.
*args :
Parameters of the Gaussian profiles, which follows the order:
wvl_line1, wvl_line2, ..., int_total_line1, int_total_line2, ...,
fwhm_line1, fwhm_line2, ..., int_cont
'''
spec_syn = np.zeros_like(wvl)
for ii in range(self.line_number):
spec_syn = spec_syn \
+ gaussian(wvl,line_wvl=args[ii],
int_total=args[ii + self.line_number],
fwhm=args[ii + self.line_number*2])
spec_syn = spec_syn + args[-1]
return spec_syn
def multi_gaussian_mixture_width(self,wvl,*args):
'''
Generate the spectra which consists of multiple Gaussian spectral lines,
some of which have the same widths (defined in self.same_width).
Parameters
----------
wvl : 1-D array
Wavelength points of the spectra.
*args :
Parameters of the Gaussian profiles, which follows the order:
wvl_line1, wvl_line2, ..., int_total_line1, int_total_line2, ...,
fwhm_line_diff_width1, fwhm_line_diff_width2, ..., fwhm_line_same_width,
int_cont
'''
spec_syn = np.zeros_like(wvl)
fwhm_arg_index_cont = 0
for ii in range(self.line_number):
if self.same_width[ii] is True:
spec_syn = spec_syn \
+ gaussian(wvl,line_wvl=args[ii],
int_total=args[ii + self.line_number],
fwhm=args[-2])
else:
spec_syn = spec_syn \
+ gaussian(wvl,line_wvl=args[ii],
int_total=args[ii + self.line_number],
fwhm=args[self.line_number*2+fwhm_arg_index_cont])
fwhm_arg_index_cont += 1
spec_syn = spec_syn + args[-1]
return spec_syn
class SpectrumFitRow:
'''
SpectrumFitRow fits spectral lines in a row. (e.g., along the slit of a slit-jaw
spectrograph)
'''
def __init__(self, data, wvl, line_number, line_wvl_init, int_max_init, \
fwhm_init, err=None, same_width=False, stray_light=False, \
stray_wvl_init=None, stray_int_total=None, stray_fwhm=None, \
mask=None,custom_func=None,custom_init=None) -> None:
'''
Initialize the SpectrumFitRow class
Parameters
----------
data : 2-D array
Input 2-D spectra (intensity) to fit.
wvl : 1-D array
1-D wavelength grid of the spectra.
line_number: integer
The desired number of lines to fit.
line_wvl_init : scalar or 1-D array
Initial wavelength(s) of the spectral line core(s).
int_max_init : scalar or 1-D array
Initial value(s) of the peak intensity.
fwhm_init : scalar or 1-D array
Initial value(s) of the full width at half maximum (FWHM).
err : 1-D array , optional
Errors in the intensity at different wavelengths. If provided,
will be used to calculate the likelihood function. Default is None.
same_width : bool or a list of bool, optional
If True, forces the fitted spectral lines have the same width. If provided
as a list of bools, only forces the spectral lines corresponding to True value
have the same width in the fitting. Default is False.
stray_light : bool, optional
If True, adds the stray light profile to the fitting. Default is False.
stray_wvl_init : scalar or 1-D array, optional
Initial wavelength(s) of the stray light line core(s). Default is None.
stray_int_total: scalar or 1-D array, optional
Integrated intensity of the stray light profile(s). Default is None.
stray_fwhm: scalar or 1-D array, optional
Full width at half maximum (FWHM) of the stray light profile(s).
Default is None.
mask: [N,2] array, optional
If provided, will mask the data between the N intervals in the fitting.
For example, [[2,4],[10,12]] will mask the data points within [2,4] and
[10,12]. Default is None.
'''
#input parameters
self.data = data
self.wvl = wvl
self.line_number = line_number
self.line_wvl_init = np.array(line_wvl_init)
self.int_max_init = np.array(int_max_init)
self.fwhm_init = np.array(fwhm_init)
self.err = err
self.same_width = same_width
self.stray_light = stray_light
self.stray_wvl_init = stray_wvl_init
self.stray_int_total = stray_int_total
self.stray_fwhm = stray_fwhm
self.mask = mask
#instance properties
self.shape = data.shape
self.wvl_plot = np.linspace(self.wvl[0],self.wvl[-1],5*len(self.wvl))
if len(data.shape) == 1:
self.frame_number = 1
else:
self.frame_number = self.shape[0]
self.custom_func = custom_func
self.custom_init = custom_init
#fitted parameters