-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstart_training_az_det_resp.py
42 lines (34 loc) · 1.39 KB
/
start_training_az_det_resp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import itertools
import os
import sys
from pathlib import Path
import hydra
import multiprocessing as mp
from omegaconf import OmegaConf
from src.misc.serialization import deserialize_dataclass
from src.trainer.az_trainer import AlphaZeroTrainer, AlphaZeroTrainerConfig
# @hydra.main(version_base=None, config_name='config', config_path=str(Path(__file__).parent / 'config_generated'))
def main(cfg: AlphaZeroTrainerConfig):
# torch.set_num_threads(1)
# os.environ["OMP_NUM_THREADS"] = "1"
print(os.getcwd(), flush=True)
print(OmegaConf.to_yaml(cfg), flush=True)
cfg_dict = OmegaConf.to_container(cfg, resolve=True)
trainer_cfg = deserialize_dataclass(cfg_dict)
trainer = AlphaZeroTrainer(trainer_cfg)
if trainer_cfg.prev_run_dir is None:
trainer.start_training()
else:
trainer.continue_training()
if __name__ == '__main__':
mp.set_start_method('spawn', force=True) # this is important for using CUDA
print(f"{mp.get_start_method()=}")
config_path = Path(__file__).parent / 'config'
config_name = 'config'
arr_id = int(sys.argv[1])
sys.argv.pop(1)
pref_lists = list(range(5))
# config_name = f"{config_prefix}_{tpl[0]}_{tpl[1]}_{tpl[2]}"
config_name = f"cfg_d7_resp_{pref_lists[arr_id]}"
print(f"{config_name=}", flush=True)
hydra.main(config_path=str(config_path), config_name=config_name, version_base=None)(main)()