-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathexample.py
67 lines (57 loc) · 3.32 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import KitNET as kit
import numpy as np
import pandas as pd
import time
##############################################################################
# KitNET is a lightweight online anomaly detection algorithm based on an ensemble of autoencoders.
# For more information and citation, please see our NDSS'18 paper: Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection
# This script demonstrates KitNET's ability to incrementally learn, and detect anomalies.
# The demo involves an m-by-n dataset with n=115 dimensions (features), and m=100,000 observations.
# Each observation is a snapshot of the network's state in terms of incremental damped statistics (see the NDSS paper for more details)
#The runtimes presented in the paper, are based on the C++ implimentation (roughly 100x faster than the python implimentation)
################### Last Tested with Anaconda 2.7.14 #######################
# Load sample dataset (a recording of the Mirai botnet malware being activated)
# The first 70,000 observations are clean...
print("Unzipping Sample Dataset...")
import zipfile
with zipfile.ZipFile("dataset.zip","r") as zip_ref:
zip_ref.extractall()
print("Reading Sample dataset...")
X = pd.read_csv("mirai3.csv",header=None).as_matrix() #an m-by-n dataset with m observations
# KitNET params:
maxAE = 10 #maximum size for any autoencoder in the ensemble layer
FMgrace = 5000 #the number of instances taken to learn the feature mapping (the ensemble's architecture)
ADgrace = 50000 #the number of instances used to train the anomaly detector (ensemble itself)
# Build KitNET
K = kit.KitNET(X.shape[1],maxAE,FMgrace,ADgrace)
RMSEs = np.zeros(X.shape[0]) # a place to save the scores
print("Running KitNET:")
start = time.time()
# Here we process (train/execute) each individual observation.
# In this way, X is essentially a stream, and each observation is discarded after performing process() method.
for i in range(X.shape[0]):
if i % 1000 == 0:
print(i)
RMSEs[i] = K.process(X[i,]) #will train during the grace periods, then execute on all the rest.
stop = time.time()
print("Complete. Time elapsed: "+ str(stop - start))
# Here we demonstrate how one can fit the RMSE scores to a log-normal distribution (useful for finding/setting a cutoff threshold \phi)
from scipy.stats import norm
benignSample = np.log(RMSEs[FMgrace+ADgrace+1:71000])
logProbs = norm.logsf(np.log(RMSEs), np.mean(benignSample), np.std(benignSample))
# plot the RMSE anomaly scores
print("Plotting results")
from matplotlib import pyplot as plt
from matplotlib import cm
plt.figure(figsize=(10,5))
timestamps = pd.read_csv("mirai3_ts.csv",header=None).as_matrix()
fig = plt.scatter(timestamps[FMgrace+ADgrace+1:],RMSEs[FMgrace+ADgrace+1:],s=0.1,c=logProbs[FMgrace+ADgrace+1:],cmap='RdYlGn')
plt.yscale("log")
plt.title("Anomaly Scores from KitNET's Execution Phase")
plt.ylabel("RMSE (log scaled)")
plt.xlabel("Time elapsed [min]")
plt.annotate('Mirai C&C channel opened [Telnet]', xy=(timestamps[71662],RMSEs[71662]), xytext=(timestamps[58000],1),arrowprops=dict(facecolor='black', shrink=0.05),)
plt.annotate('Mirai Bot Activated\nMirai scans network for vulnerable devices', xy=(timestamps[72662],1), xytext=(timestamps[55000],5),arrowprops=dict(facecolor='black', shrink=0.05),)
figbar=plt.colorbar()
figbar.ax.set_ylabel('Log Probability\n ', rotation=270)
plt.show()