forked from shivprime94/Data-Structure-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
minProductSubset.cpp
55 lines (52 loc) · 1.35 KB
/
minProductSubset.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
// CPP program to find maximum product of
// a subset.
#include <bits/stdc++.h>
using namespace std;
int minProductSubset(int a[], int n)
{
if (n == 1)
return a[0];
// Find count of negative numbers, count of zeros,
// maximum valued negative number, minimum valued
// positive number and product of non-zero numbers
int max_neg = INT_MIN, min_pos = INT_MAX, count_neg = 0,
count_zero = 0, prod = 1;
for (int i = 0; i < n; i++) {
// If number is 0, we don't multiply it with
// product.
if (a[i] == 0) {
count_zero++;
continue;
}
// Count negatives and keep track of maximum valued
// negative.
if (a[i] < 0) {
count_neg++;
max_neg = max(max_neg, a[i]);
}
// Track minimum positive number of array
if (a[i] > 0)
min_pos = min(min_pos, a[i]);
prod = prod * a[i];
}
// If there are all zeros or no negative number present
if (count_zero == n || (count_neg == 0 && count_zero > 0))
return 0;
// If there are all positive
if (count_neg == 0)
return min_pos;
// If there are even number of negative numbers and
// count_neg not 0
if (!(count_neg & 1) && count_neg != 0)
// Otherwise result is product of all non-zeros
// divided by maximum valued negative.
prod = prod / max_neg;
return prod;
}
int main()
{
int a[] = { -1, -1, -2, 4, 3 };
int n = sizeof(a) / sizeof(a[0]);
cout << minProductSubset(a, n);
return 0;
}