-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
165 lines (130 loc) · 6.52 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class ResidualBlock(nn.Module):
"""Residual Block with instance normalization."""
def __init__(self, dim_in, dim_out):
super(ResidualBlock, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(dim_in, dim_out, kernel_size=3, stride=1, padding=1, bias=False),
nn.InstanceNorm2d(dim_out, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
nn.Conv2d(dim_out, dim_out, kernel_size=3, stride=1, padding=1, bias=False),
nn.InstanceNorm2d(dim_out, affine=True, track_running_stats=True))
def forward(self, x):
return x + self.main(x)
class Encoder(nn.Module):
"""Enocder network."""
def __init__(self, image_size=128, conv_dim=64, c_dim=5):
super(Encoder, self).__init__()
layers = []
layers.append(nn.Conv2d(1, conv_dim, kernel_size=7, stride=1, padding=3, bias=False))
layers.append(nn.InstanceNorm2d(conv_dim, affine=True, track_running_stats=True))
layers.append(nn.LeakyReLU(inplace=True))
# Down-sampling layers.
curr_dim = conv_dim
for i in range(2):
layers.append(nn.Conv2d(curr_dim, curr_dim*2, kernel_size=4, stride=2, padding=1, bias=False))
layers.append(nn.InstanceNorm2d(curr_dim*2, affine=True, track_running_stats=True))
layers.append(nn.LeakyReLU(inplace=True))
curr_dim = curr_dim * 2
kernel_size = int(image_size / np.power(2, 2))
self.main = nn.Sequential(*layers)
def forward(self, x):
# Replicate spatially and concatenate domain information.
out_src = self.main(x)
return out_src, None
class Classifier(nn.Module):
"""Enocder network."""
def __init__(self, image_size=128, conv_dim=64, c_dim=5):
super(Classifier, self).__init__()
layers = []
layers.append(nn.Conv2d(1, conv_dim, kernel_size=7, stride=1, padding=3, bias=False))
layers.append(nn.InstanceNorm2d(conv_dim, affine=True, track_running_stats=True))
layers.append(nn.LeakyReLU(inplace=True))
# Down-sampling layers.
curr_dim = conv_dim
for i in range(2):
layers.append(nn.Conv2d(curr_dim, curr_dim*2, kernel_size=4, stride=2, padding=1, bias=False))
layers.append(nn.InstanceNorm2d(curr_dim*2, affine=True, track_running_stats=True))
layers.append(nn.LeakyReLU(inplace=True))
curr_dim = curr_dim * 2
kernel_size = int(image_size / np.power(2, 2))
self.main = nn.Sequential(*layers)
self.conv = nn.Conv2d(curr_dim, c_dim, kernel_size=kernel_size, bias=False)
def forward(self, x):
# Replicate spatially and concatenate domain information.
out_src = self.main(x)
out_cls = self.conv(out_src)
return out_src, out_cls.view(out_cls.size(0), out_cls.size(1))
class EncoderList(nn.Module):
def __init__(self, image_size=128, conv_dim=64, s_dim=5, c_dim=5):
super(EncoderList, self).__init__()
self.style_encoder = Encoder(image_size, conv_dim, s_dim)
self.char_encoder = Encoder(image_size, conv_dim, c_dim)
def forward(self, x):
style_src, style_cls = self.style_encoder(x)
char_src, char_cls = self.char_encoder(x)
return style_src, char_src, style_cls, char_cls
class ClassifierList(nn.Module):
def __init__(self, image_size=128, conv_dim=64, s_dim=5, c_dim=5):
super(ClassifierList, self).__init__()
self.style_encoder = Classifier(image_size, conv_dim, s_dim)
self.char_encoder = Classifier(image_size, conv_dim, c_dim)
def forward(self, x):
style_src, style_cls = self.style_encoder(x)
char_src, char_cls = self.char_encoder(x)
return style_src, char_src, style_cls, char_cls
class Generator(nn.Module):
"""Generator network."""
def __init__(self, conv_dim=64, c_dim=5, repeat_num=6):
super(Generator, self).__init__()
curr_dim = conv_dim * np.power(2, 2)
self.mixer = nn.Conv2d(2*curr_dim+2*c_dim, curr_dim, 1)
layers = []
# Bottleneck layers.
for i in range(repeat_num):
layers.append(ResidualBlock(dim_in=curr_dim, dim_out=curr_dim))
# Up-sampling layers.
for i in range(2):
layers.append(nn.ConvTranspose2d(curr_dim, curr_dim//2, kernel_size=4, stride=2, padding=1, bias=False))
layers.append(nn.InstanceNorm2d(curr_dim//2, affine=True, track_running_stats=True))
layers.append(nn.LeakyReLU(inplace=True))
curr_dim = curr_dim // 2
layers.append(nn.Conv2d(curr_dim, 1, kernel_size=7, stride=1, padding=3, bias=False))
layers.append(nn.Tanh())
self.main = nn.Sequential(*layers)
def forward(self, c_from, style, char, c_to):
# Replicate spatially and concatenate domain information.
c_from = c_from.view(c_from.size(0), c_from.size(1), 1, 1)
c_from = c_from.repeat(1, 1, style.size(2), style.size(3))
c_to = c_to.view(c_to.size(0), c_to.size(1), 1, 1)
c_to = c_to.repeat(1, 1, style.size(2), style.size(3))
z = self.mixer(torch.cat([c_from, style, char, c_to], 1))
return self.main(z)
class Discriminator(nn.Module):
"""Discriminator network with PatchGAN."""
def __init__(self, image_size=128, conv_dim=64, s_dim=5, c_dim=5, repeat_num=6):
super(Discriminator, self).__init__()
layers = []
layers.append(nn.Conv2d(1, conv_dim, kernel_size=4, stride=2, padding=1))
layers.append(nn.LeakyReLU(0.01))
curr_dim = conv_dim
for i in range(1, repeat_num):
layers.append(nn.Conv2d(curr_dim, curr_dim*2, kernel_size=4, stride=2, padding=1))
layers.append(nn.LeakyReLU(0.01))
curr_dim = curr_dim * 2
kernel_size = int(image_size / np.power(2, repeat_num))
self.main = nn.Sequential(*layers)
self.conv1 = nn.Conv2d(curr_dim, 1, kernel_size=kernel_size, bias=False)
self.conv2 = nn.Conv2d(curr_dim, s_dim, kernel_size=kernel_size, bias=False)
self.conv3 = nn.Conv2d(curr_dim, c_dim, kernel_size=kernel_size, bias=False)
def forward(self, x):
h = self.main(x)
out_src = self.conv1(h)
out_style = self.conv2(h)
out_char = self.conv3(h)
return out_src.view(out_src.size(0), out_src.size(1)), \
out_style.view(out_style.size(0), out_style.size(1)),\
out_char.view(out_char.size(0), out_char.size(1))