-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsolver.py
542 lines (455 loc) · 24.2 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
from model import EncoderList, Generator
from model import Discriminator
from model import ClassifierList
from torch.autograd import Variable
from torchvision.utils import save_image
import torch
import torch.nn.functional as F
import numpy as np
import os
import time
import datetime
import utils
class Solver(object):
"""Solver for training and testing TCN."""
def __init__(self, data_loader, config):
"""Initialize configurations."""
# Data loader.
self.data_loader = data_loader
# Model configurations.
self.image_size = config.image_size
self.style_cnt = config.style_cnt
self.char_cnt = config.char_cnt
self.g_conv_dim = config.g_conv_dim
self.d_conv_dim = config.d_conv_dim
self.g_repeat_num = config.g_repeat_num
self.d_repeat_num = config.d_repeat_num
self.lambda_cls = config.lambda_cls
self.lambda_rec = config.lambda_rec
self.lambda_ssim= config.lambda_ssim
self.lambda_gp = config.lambda_gp
# Training configurations.
self.batch_size = config.batch_size
self.enc_iters = config.enc_iters
self.num_iters = config.num_iters
self.num_iters_decay = config.num_iters_decay
self.g_lr = config.g_lr
self.d_lr = config.d_lr
self.n_critic = config.n_critic
self.beta1 = config.beta1
self.beta2 = config.beta2
self.resume_iters = config.resume_iters
# Test configurations.
self.test_iters = config.test_iters
# Miscellaneous.
self.use_tensorboard = config.use_tensorboard
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Directories.
self.log_dir = config.log_dir
self.sample_dir = config.sample_dir
self.model_save_dir = config.model_save_dir
self.result_dir = config.result_dir
# Step size.
self.log_step = config.log_step
self.sample_step = config.sample_step
self.model_save_step = config.model_save_step
self.lr_update_step = config.lr_update_step
# Build the model and tensorboard.
self.build_model()
if self.use_tensorboard:
self.build_tensorboard()
def build_model(self):
"""Create a generator and a discriminator."""
self.E = EncoderList(self.image_size, self.g_conv_dim, self.style_cnt, self.char_cnt)
self.G = Generator(self.g_conv_dim, self.char_cnt, self.g_repeat_num)
self.D = Discriminator(self.image_size, self.d_conv_dim, self.style_cnt, self.char_cnt, self.d_repeat_num)
self.g_optimizer = torch.optim.Adam(list(self.E.parameters()) + list(self.G.parameters()),
self.g_lr, [self.beta1, self.beta2])
self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2])
self.print_network(self.E, 'E')
self.print_network(self.G, 'G')
self.print_network(self.D, 'D')
self.E.to(self.device)
self.G.to(self.device)
self.D.to(self.device)
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def restore_model(self, resume_iters):
"""Restore the trained generator and discriminator."""
print('Loading the trained models from step {}...'.format(resume_iters))
E_path = os.path.join(self.model_save_dir, '{}-E.ckpt'.format(resume_iters))
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(resume_iters))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(resume_iters))
self.E.load_state_dict(torch.load(E_path, map_location=lambda storage, loc: storage))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage))
def restore_cls_model(self):
"""Restore the trained generator and discriminator."""
self.C = ClassifierList(self.image_size, self.g_conv_dim, self.style_cnt, self.char_cnt).to(self.device)
C_path = os.path.join(self.model_save_dir, 'C.ckpt')
self.C.load_state_dict(torch.load(C_path, map_location=lambda storage, loc: storage))
def build_tensorboard(self):
"""Build a tensorboard logger."""
from logger import Logger
self.logger = Logger(self.log_dir)
def update_lr(self, g_lr, d_lr):
"""Decay learning rates of the generator and discriminator."""
for param_group in self.g_optimizer.param_groups:
param_group['lr'] = g_lr
for param_group in self.d_optimizer.param_groups:
param_group['lr'] = d_lr
def reset_grad(self):
"""Reset the gradient buffers."""
self.g_optimizer.zero_grad()
self.d_optimizer.zero_grad()
def denorm(self, x):
"""Convert the range from [-1, 1] to [0, 1]."""
out = (x + 1) / 2
return out.clamp_(0, 1)
def gradient_penalty(self, y, x):
"""Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
weight = torch.ones(y.size()).to(self.device)
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
return torch.mean((dydx_l2norm-1)**2)
def label2onehot(self, labels, dim):
"""Convert label indices to one-hot vectors."""
batch_size = labels.size(0)
out = torch.zeros(batch_size, dim)
out[np.arange(batch_size), labels.long()] = 1
return out.to(self.device)
def classification_loss(self, logit, target):
"""Compute binary or softmax cross entropy loss."""
return F.cross_entropy(logit, target)
def classification_acc(self, logit, target):
"""Compute accuracy."""
logit = torch.max(logit, 1)[1]
target = target
correct_prediction = (logit == target).float()
return torch.mean(correct_prediction)
def pretrain(self):
"""Pretrain TCN."""
# data loader slit
total_len = len(self.data_loader)
train_thr = int(total_len*0.8)
data_iter = iter(self.data_loader)
# Learning rate cache for decaying.
g_lr = self.g_lr
loss = {'E/acc_style':0, 'E/acc_char':0}
acc_style = 0.
acc_char = 0.
# Start training.
print('Start pre-training...')
for i in range(self.enc_iters):
if (i % total_len) < train_thr:
# =================================================================================== #
# 1. Preprocess input data #
# =================================================================================== #
# Fetch real images and labels.
try:
x_real, style_trg, char_trg, x_style, x_char, trg_style, trg_char = next(data_iter)
except:
log = "Iteration [{}/{}]".format(i, self.num_iters)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value/(total_len-train_thr))
print(log)
acc_style = loss['E/acc_style']/(total_len-train_thr)
acc_char = loss['E/acc_char']/(total_len-train_thr)
loss = {'E/acc_style':0, 'E/acc_char':0}
data_iter = iter(self.data_loader)
x_real, style_trg, char_trg, x_style, x_char, trg_style, trg_char = next(data_iter)
batch_size = x_real.size(0)
# Generate real labels
x_real = x_real.to(self.device)
x_style= x_style.to(self.device)
x_char = x_char.to(self.device)
style_trg = style_trg.to(self.device)
trg_style = trg_style.to(self.device)
char_trg = char_trg.to(self.device)
trg_char = trg_char.to(self.device)
# =================================================================================== #
# 2. Train the encoder #
# =================================================================================== #
# Compute loss with real images.
x_sout, x_cout, cls_style, cls_char = self.E(x_real)
e_loss_style = self.classification_loss(cls_style, x_style)
e_loss_char = self.classification_loss(cls_char, x_char)
style_sout, style_cout, _, _ = self.E(style_trg)
char_sout, char_cout, _, _ = self.E(char_trg)
triplet_loss_style = F.triplet_margin_loss(x_sout, char_sout, style_sout, margin=1)
triplet_loss_char = F.triplet_margin_loss(x_cout, style_cout, char_cout, margin=1)
# Backward and optimize.
e_loss = e_loss_style + e_loss_char
if acc_style > 0.8:
e_loss += triplet_loss_style
if acc_char > 0.8:
e_loss += triplet_loss_char
self.reset_grad()
e_loss.backward()
self.g_optimizer.step()
else:
with torch.no_grad():
x_real, _, _, x_style, x_char, _, _ = next(data_iter)
# Prepare input images and target domain labels.
x_real = x_real.to(self.device)
x_style= x_style.to(self.device)
x_char = x_char.to(self.device)
# Compute loss with real images.
_, _, out_style, out_char = self.E(x_real)
d_acc_style= self.classification_acc(out_style, x_style)
d_acc_char = self.classification_acc(out_char, x_char)
# Logging.
loss['E/acc_style']+= d_acc_style.item()
loss['E/acc_char'] += d_acc_char.item()
# Save model checkpoints.
if (i+1) % 3000 == 0:
E_path = os.path.join(self.model_save_dir, '{}-E.ckpt'.format(i+1))
torch.save(self.E.state_dict(), E_path)
print('Saved model checkpoints into {}...'.format(self.model_save_dir))
# Decay learning rates.
if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay):
g_lr -= (self.g_lr / float(self.num_iters_decay))
for param_group in self.g_optimizer.param_groups:
param_group['lr'] = g_lr
print ('Decayed learning rates, e_lr: {}.'.format(g_lr))
def train(self):
"""Train TCN."""
# Start training from scratch or resume training.
start_iters = 0
E_path = os.path.join(self.model_save_dir, 'E.ckpt'.format(self.enc_iters))
if not os.path.isfile(E_path):
self.pretrain()
pretrained_E_dict = torch.load(E_path, map_location=lambda storage, loc: storage)
E_dict = self.E.state_dict()
pretrained_E_dict = {k: v for k, v in pretrained_E_dict.items() if k in E_dict}
E_dict.update(pretrained_E_dict)
self.E.load_state_dict(E_dict)
if self.resume_iters:
start_iters = self.resume_iters
self.restore_model(self.resume_iters)
# Fetch fixed inputs for debugging.
data_iter = iter(self.data_loader)
x_fixed, x_fixed_style, x_fixed_char, y_fixed, y_fixed_char = next(data_iter)
x_fixed = x_fixed.to(self.device)
y_fixed = y_fixed.to(self.device)
y_fixed_char = y_fixed_char.to(self.device)
c_fixed_list = [(self.label2onehot(x_fixed_char, self.char_cnt),
self.label2onehot(y_fixed_char, self.char_cnt))]
# Learning rate cache for decaying.
g_lr = self.g_lr
d_lr = self.d_lr
# Start training.
print('Start training...')
start_time = time.time()
for i in range(start_iters, self.num_iters):
# =================================================================================== #
# 1. Preprocess input data #
# =================================================================================== #
# Fetch real images and labels.
try:
x_real, x_style, x_char, y_trg, y_char = next(data_iter)
except:
data_iter = iter(self.data_loader)
x_real, x_style, x_char, y_trg, y_char = next(data_iter)
batch_size = x_real.size(0)
# Generate real labels
x_real = x_real.to(self.device)
x_style= x_style.to(self.device)
x_char = x_char.to(self.device)
x_char_onehot = self.label2onehot(x_char, self.char_cnt)
# Character transfer. keep style. and thats' character index
y_trg = y_trg.to(self.device)
y_char = y_char.to(self.device)
y_char_onehot = self.label2onehot(y_char, self.char_cnt)
# Style transfer. keep character. and thats' style index
# =================================================================================== #
# 2. Train the discriminator #
# =================================================================================== #
# Compute loss with real images.
out_src, out_style, out_char = self.D(y_trg)
d_loss_real = torch.mean((out_src - 1) ** 2)
d_loss_style = self.classification_loss(out_style, x_style)
d_loss_char = self.classification_loss(out_char, y_char)
d_acc_char = self.classification_acc(out_char, y_char)
# Compute loss with fake images.
style_enc, char_enc, _, _ = self.E(x_real)
y_fake = self.G(x_char_onehot, style_enc, char_enc, y_char_onehot)
fake_src, _, _ = self.D(y_fake.detach())
d_loss_fake = torch.mean(fake_src ** 2)
# Compute loss for gradient penalty.
alpha = torch.rand(y_trg.size(0), 1, 1, 1).to(self.device)
y_hat = (alpha * y_trg.data + (1 - alpha) * y_fake.data).requires_grad_(True)
gp_src, _, _ = self.D(y_hat)
d_loss_gp = self.gradient_penalty(gp_src, y_hat)
# Backward and optimize.
d_loss = d_loss_real + d_loss_fake + self.lambda_cls * (d_loss_style + d_loss_char)\
+ self.lambda_gp * d_loss_gp
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Logging.
loss = {}
loss['D/loss_real'] = d_loss_real.item()
loss['D/loss_fake'] = d_loss_fake.item()
loss['D/loss_style'] = d_loss_style.item()
loss['D/loss_char'] = d_loss_char.item()
loss['D/acc_char'] = d_acc_char.item()
loss['D/loss_gp'] = d_loss_gp.item()
# =================================================================================== #
# 3. Train the generator #
# =================================================================================== #
if (i+1) % self.n_critic == 0:
# Original-to-target domain.
style_enc, char_enc, _, _ = self.E(x_real)
y_fake = self.G(x_char_onehot, style_enc, char_enc, y_char_onehot)
out_src, out_style, out_char = self.D(y_fake)
g_loss_fake = torch.mean((out_src - 1) ** 2)
g_loss_style = self.classification_loss(out_style, x_style)
g_loss_char = self.classification_loss(out_char, y_char)
g_acc_style = self.classification_acc(out_style, x_style)
g_acc_char = self.classification_acc(out_char, y_char)
# Training G to 'y_fake' and 'y_trg' are similar. L1 loss
g_loss_l1 = torch.mean(torch.abs(y_trg - y_fake))
# Compute Structural similarity measure of the Generator
g_loss_ssim = utils.ssim(y_trg, y_fake)
# Target-to-original domain.
style_fenc, char_fenc, _, _ = self.E(y_fake)
x_reconst = self.G(y_char_onehot, style_fenc, char_fenc, x_char_onehot)
g_loss_rec = torch.mean(torch.abs(x_real - x_reconst))
# Reconstruct Perceptual Loss
style_renc, char_renc, _, _ = self.E(x_reconst)
g_loss_percept = torch.mean((style_enc - style_renc) ** 2) +\
torch.mean((char_enc - char_renc) ** 2)
x_fake = self.G(x_char_onehot, style_enc, char_enc, x_char_onehot)
g_loss_id = torch.mean(torch.abs(x_real - x_fake))
# Backward and optimize.
g_loss = g_loss_fake + g_loss_style \
+ self.lambda_cls * (g_loss_char) \
+ self.lambda_rec * (g_loss_rec + g_loss_percept + g_loss_id)
+ self.lambda_ssim* (g_loss_l1 - g_loss_ssim)
self.reset_grad()
g_loss.backward()
self.g_optimizer.step()
# Logging.
loss['G/loss_fake'] = g_loss_fake.item()
loss['G/loss_style'] = g_loss_style.item()
loss['G/loss_char'] = g_loss_char.item()
loss['G/acc_char'] = g_acc_char.item()
loss['G/loss_l1'] = g_loss_l1.item()
loss['G/loss_ssim'] = g_loss_ssim.item()
loss['G/loss_rec'] = g_loss_rec.item()
loss['G/loss_per'] = g_loss_percept.item()
loss['G/loss_id'] = g_loss_id.item()
# =================================================================================== #
# 4. Miscellaneous #
# =================================================================================== #
# Print out training information.
if (i+1) % self.log_step == 0:
et = time.time() - start_time
et = str(datetime.timedelta(seconds=et))[:-7]
log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
if self.use_tensorboard:
for tag, value in loss.items():
self.logger.scalar_summary(tag, value, i+1)
# Translate fixed images for debugging.
if (i+1) % self.sample_step == 0:
with torch.no_grad():
x_fake_list = [x_real, y_trg, y_fake, x_fixed, y_fixed]
style_fixed_enc, char_fixed_enc, _, _ = self.E(x_fixed)
for (c_ffixed, c_tfixed) in c_fixed_list:
x_fake_list.append(self.G(c_ffixed, style_fixed_enc, char_fixed_enc, c_tfixed))
x_concat = torch.cat(x_fake_list, dim=3)
sample_path = os.path.join(self.sample_dir, '{}-images.jpg'.format(i+1))
save_image(x_concat.data.cpu(), sample_path, nrow=1, padding=0)
print('Saved real and fake images into {}...'.format(sample_path))
# Save model checkpoints.
if (i+1) % self.model_save_step == 0:
E_path = os.path.join(self.model_save_dir, '{}-E.ckpt'.format(i+1))
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1))
torch.save(self.E.state_dict(), E_path)
torch.save(self.G.state_dict(), G_path)
torch.save(self.D.state_dict(), D_path)
print('Saved model checkpoints into {}...'.format(self.model_save_dir))
# Decay learning rates.
if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay):
g_lr -= (self.g_lr / float(self.num_iters_decay))
d_lr -= (self.d_lr / float(self.num_iters_decay))
self.update_lr(g_lr, d_lr)
print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))
def test(self):
"""Translate images using trained TCN."""
from sklearn.metrics import accuracy_score
# Load the trained generator.
self.restore_model(self.test_iters)
self.restore_cls_model()
l1_rec = 0.
ssim_rec = 0.
l1_test = 0.
ssim_test = 0.
style_acc = 0.
char_acc = 0.
style_acc_rec = 0.
char_acc_rec = 0.
with torch.no_grad():
for i, (x_real, x_style, x_char, y_trg, y_char) in enumerate(self.data_loader):
# Prepare input images and target domain labels.
x_real = x_real.to(self.device)
y_trg = y_trg.to(self.device)
x_char = x_char.to(self.device)
x_char_onehot = self.label2onehot(x_char, self.char_cnt)
y_char = y_char.to(self.device)
y_char_onehot = self.label2onehot(y_char, self.char_cnt)
# Translate images.
fake_list = [x_real, y_trg]
style_enc, char_enc, _, _ = self.E(x_real)
x_fake = self.G(x_char_onehot, style_enc, char_enc, x_char_onehot)
fake_list.append(x_fake)
_, _, style_cls_rec, char_cls_rec = self.C(x_fake)
y_fake = self.G(x_char_onehot, style_enc, char_enc, y_char_onehot)
fake_list.append(y_fake)
_, _, style_cls, char_cls = self.C(y_fake)
loss_l1_rec = torch.mean(torch.abs(x_real - x_fake))
loss_ssim_rec = utils.ssim(x_real, x_fake)
loss_l1 = torch.mean(torch.abs(y_trg - y_fake))
loss_ssim = utils.ssim(y_trg, y_fake)
acc_style_rec = accuracy_score(x_style.cpu().numpy(),
torch.max(style_cls_rec, 1)[1].cpu().numpy())
acc_char_rec = accuracy_score(x_char.cpu().numpy(),
torch.max(char_cls_rec, 1)[1].cpu().numpy())
acc_style = accuracy_score(x_style.cpu().numpy(),
torch.max(style_cls, 1)[1].cpu().numpy())
acc_char = accuracy_score(y_char.cpu().numpy(),
torch.max(char_cls, 1)[1].cpu().numpy())
l1_rec += loss_l1_rec.item()
ssim_rec += loss_ssim_rec.item()
l1_test += loss_l1.item()
ssim_test += loss_ssim.item()
style_acc_rec += acc_style_rec
char_acc_rec += acc_char_rec
style_acc += acc_style
char_acc += acc_char
# Save the translated images.
x_concat = torch.cat(fake_list, dim=3)
result_path = os.path.join(self.result_dir, '{}-images.jpg'.format(i+1))
save_image(x_concat.data.cpu(), result_path, nrow=1, padding=0)
print('Saved real and fake images into {}...'.format(result_path))
print('[Rec L1] : {} [Rec SSIM] : {} [Rec Style Acc] : {} [Rec Char Acc] : {} \
[TC L1] : {} [TC SSIM] : {}, [Style Acc] : {} [Char Acc] : {}'.format(
l1_rec/(i+1), ssim_rec/(i+1), style_acc_rec/(i+1), char_acc_rec/(i+1),
l1_test/(i+1), ssim_test/(i+1), style_acc/(i+1), char_acc/(i+1)))