-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmodels.py
148 lines (129 loc) · 5.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#! /usr/bin/env python
import os
import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import config
class POI2VEC(nn.Module):
def __init__(self, poi_cnt, user_cnt, id2route, id2lr, id2prob):
super(POI2VEC, self).__init__()
# attributes
route_cnt = np.power(2, config.route_depth)-1
self.id2route = id2route
self.id2lr = np.array(id2lr)
self.id2prob = np.array(id2prob)
# models
self.poi_weight = nn.Embedding(poi_cnt, config.feat_dim, padding_idx=0)
self.poi_weight.weight.data.normal_(config.weight_m, config.weight_v)
self.user_weight = nn.Embedding(user_cnt, config.feat_dim, padding_idx=0)
self.user_weight.weight.data.normal_(config.weight_m, config.weight_v)
self.route_weight = nn.Embedding(route_cnt, config.feat_dim, padding_idx=0)
self.route_weight.weight.data.normal_(config.weight_m, config.weight_v)
self.sigmoid = nn.Sigmoid()
def forward(self, user, context, target):
target = map(int, target)
route = Variable(torch.from_numpy(self.id2route[target]))\
.contiguous().view(-1, config.route_count*config.route_depth).type(config.ltype)
# batch x (route_coutn(4) x route_dept(22))
lr = Variable(torch.from_numpy(self.id2lr[target]))\
.view(-1, config.route_count*(config.route_depth)).type(config.ftype)
# batch x (route_count(4) x route_depth(21))
prob = Variable(torch.from_numpy(self.id2prob[target]))\
.view(-1, config.route_count).type(config.ftype) # batch x route_count(4)
context = self.poi_weight(context) # batch x context_len(32) x feat_dim(200)
route = self.route_weight(route) # batch x (route_count(4) x route_depth(22)) x feat_dim(200)
user = self.user_weight(user) # batch x feat_dim(200)
target = Variable(torch.from_numpy(np.asarray(target)).type(config.ltype))
target = self.poi_weight(target)
phi_context = torch.sum(context, dim=1, keepdim=True).permute(0,2,1) # batch x feat_dim x 1
psi_context = torch.bmm(route, phi_context) # batch x (route_count x route_depth) x 1
psi_context = self.sigmoid(psi_context).view(-1, config.route_count*config.route_depth)
psi_context = (torch.pow(torch.mul(psi_context, 2), lr) - psi_context)\
.view(-1, config.route_count, config.route_depth)
pr_path = 1
for i in xrange(config.route_depth):
pr_path = torch.mul(psi_context[:,:,i], pr_path)
pr_path = torch.sum(torch.mul(pr_path, prob), 1)
pr_user = torch.mm(user, self.poi_weight.weight.t())
pr_user = torch.sum(torch.exp(pr_user), 1)
pr_user = torch.div(torch.exp(torch.sum(torch.mul(target, user), 1)), pr_user)
pr_ult = 1.0-torch.sum(torch.mul(pr_user, pr_path))
return pr_ult
class Rec:
# Rectangle for calculate overlaped area
def __init__(self, (top, down, left, right)):
self.top = top
self.down = down
self.left = left
self.right = right
def overlap(self, a):
dx = min(self.top, a.top) - max(self.down, a.down)
dy = min(self.right, a.right) - max(self.left, a.left)
if (dx>=0) and (dy>=0):
return dx*dy
else:
# error
return -1
class Node:
# Tree Node
theta = 0.5
count = 0
leaves = []
def __init__(self, west, east, north, south, level):
self.left = None
self.right = None
self.west = west
self.east = east
self.north = north
self.south = south
self.level = level
Node.count += 1
self.count = Node.count
def build(self):
# even : horizen, odd : vertical
if self.level%2 == 0:
if (self.east - (self.west+self.east)/2) > 2*Node.theta:
self.left = Node(self.west, (self.west+self.east)/2, self.north, self.south, self.level+1)
self.right = Node((self.west+self.east)/2, self.east, self.north, self.south, self.level+1)
self.left.build()
self.right.build()
else:
Node.leaves.append(self)
else:
if (self.north - (self.north+self.south)/2) > 2*Node.theta:
self.left = Node(self.west, self.east, self.north, (self.north+self.south)/2, self.level+1)
self.right = Node(self.west, self.east, (self.north+self.south)/2, self.south, self.level+1)
self.left.build()
self.right.build()
else:
Node.leaves.append(self)
def find_route(self, (latitude, longitude)):
if self.left == None:
prev_route = [self.count]
prev_lr = []
return prev_route, prev_lr
# left : 0, right : 1
if self.level%2 == 0:
if self.left.east < latitude:
prev_route, prev_lr = self.right.find_route((latitude, longitude))
prev_lr.append(1)
else:
prev_route, prev_lr = self.left.find_route((latitude, longitude))
prev_lr.append(0)
else:
if self.left.south < longitude:
prev_route, prev_lr = self.left.find_route((latitude, longitude))
prev_lr.append(0)
else:
prev_route, prev_lr = self.right.find_route((latitude, longitude))
prev_lr.append(1)
prev_route.append(self.count)
return prev_route, prev_lr
def find_idx(self, idx):
# find in leaves
for leaf in Node.leaves:
if leaf.count == idx:
return leaf.north, leaf.south, leaf.west, leaf.east