-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer_dalle.py
executable file
·226 lines (181 loc) · 11.3 KB
/
infer_dalle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import argparse, yaml
import glob
import os
import datetime
import torch
from cmota.models.vqvae import VQVAE, EMAVQVAE, GumbelVQVAE
from cmota.models.cond_transformer import Net2NetTransformer
from cmota.loader import StoryTextImageDataModule
from cmota.modules.dalle.tokenizer import HugTokenizer, YttmTokenizer #tokenizer
from cmota.modules.dalle.tokenizer_mindalle import build_tokenizer
from torchvision import transforms as T
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
def exists(val):
return val is not None
def get_trainable_params(model):
return [params for params in model.parameters() if params.requires_grad]
if __name__ == "__main__":
# argument parsing
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser(description='DALL-E Training for Pytorch GPU')
# Added configuration for recurrent transformer
parser.add_argument('--n_memory_cells', type=int, default=1, help='n_memory_cells')
parser.add_argument('--load_images', action='store_true', default=False, help='load images in ram')
parser.add_argument('--memory', action='store_true', default=False, help='use memory')
parser.add_argument('--gru_updater', action='store_true', default=False, help='gru memory updater')
parser.add_argument('--special_case_img_seq_len', action='store_true', default=False, help='64 image size to 16x16 token size')
parser.add_argument('--bidirection', action='store_true', default=False, help='Whether or not to use bi-directional training')
parser.add_argument('--last_layer_memory', action='store_true', default=False, help='Last layer memory update')
parser.add_argument('--first_layer_memory', action='store_true', default=False, help='First layer memory update')
parser.add_argument('--nth_markov', action='store_true', default=False, help='N-th order memory propagation')
parser.add_argument('--nth_markov_w_mlp', action='store_true', default=False, help='N-th order memory propagation w/ mlp layer')
parser.add_argument('--backward_flow', action='store_true', default=False, help='backward flow generation')
parser.add_argument('--top_p', type=float, default=0.9, help='backward flow generation')
#path configuration
parser.add_argument('--data_dir', type=str, default='dataset/ducogan_pororo', help='path to train/val dataset')
parser.add_argument('--log_dir', type=str, default='results/',
help='path to save logs')
parser.add_argument('--vae_path', type=str,
help='path to your trained VAE')
parser.add_argument('--bpe_path', type=str,
help='path to your BPE json file')
parser.add_argument('--backup_dir', type=str, default='backups/',
help='path to save backups for sudden crash')
parser.add_argument('--ckpt_path', type=str,default='results/checkpoints/last.ckpt',
help='path to previous checkpoint')
parser.add_argument('--gpu_dist', action='store_true', default=False,
help='distributed training with gpus')
parser.add_argument('--infer_mode', type=str, help='val or test', default='test')
parser.add_argument('--infer_name', type=str, help='val or test', default='pororo_128_tmp')
#training configuration
parser.add_argument('--backup', action='store_true', default=False,
help='save backup and load from backup if restart happens')
parser.add_argument('--backup_steps', type =int, default = 1000,
help='saves backup every n training steps')
parser.add_argument('--image_log_steps', type=int, default=1000,
help='log image outputs for every n step.')
parser.add_argument('--refresh_rate', type=int, default=1,
help='progress bar refresh rate')
parser.add_argument('--precision', type=int, default=32,
help='precision for training')
parser.add_argument('--fake_data', action='store_true', default=False,
help='using fake_data for debugging')
parser.add_argument('--resume', action='store_true', default=False,
help='whether to resume from checkpoint')
parser.add_argument('--seed', type=int, default=42,
help='random seed')
parser.add_argument('--gpus', type=int, default=16,
help='number of gpus')
parser.add_argument('--num_sanity_val_steps', type=int, default=0,
help='num_sanity_val_steps')
parser.add_argument('--batch_size', type=int, default=12,
help='training settings')
parser.add_argument('--epochs', type=int, default=100,
help='training settings')
parser.add_argument('--learning_rate', default=4.5e-6, type=float,
help='base learning rate')
parser.add_argument('--lr_decay', action = 'store_true')
parser.add_argument('--num_workers', type=int, default=64,
help='training settings')
parser.add_argument('--img_size', type=int, default=256,
help='training settings')
parser.add_argument('--clip_grad_norm', default = 0.5, type = float, help = 'Clip gradient norm')
parser.add_argument('--hug', dest='hug', action='store_true')
parser.add_argument('--resize_ratio', type=float, default=0.75,
help='Random resized crop lower ratio')
parser.add_argument('--ga_steps', default = 1, type = int,
help = 'Number of steps to accumulate gradients across per each iteration.')
parser.add_argument('--truncate_captions', dest='truncate_captions', action='store_true',
help='Captions passed in which exceed the max token length will be truncated if this is set.')
parser.add_argument('--test', action='store_true', default=False,
help='test run')
parser.add_argument('--debug', action='store_true', default=False,
help='debug run')
parser.add_argument('--web_dataset',action='store_true', default=False,
help='enable web_dataset')
parser.add_argument('--wds_keys', type=str, default='img,cap',
help='web_dataset keys')
parser.add_argument('--dataset_size', nargs='+', type=int, default=[1e9],
help='training settings')
#VAE configuration
parser.add_argument('--vae', type=str, default='evqvae')
parser.add_argument('--finetuned', action='store_true', default=False,
help='whether vae is finetuned')
parser.add_argument('--ch_mult', nargs='+', type=int, default=[1,2,2,4],
help='resnet channel multiplier')
parser.add_argument('--attn_resolutions', nargs='+', type=int, default=[32],
help='model settings')
parser.add_argument('--loss_type', type=str, default='mse')
parser.add_argument('--p_loss_weight', type = float, default=0.1,
help = 'Perceptual loss weight')
#Transformer configuration
parser.add_argument('--hidden_dim', default = 512, type = int,
help = 'Model dimension')
parser.add_argument('--text_seq_len', default = 128, type = int,
help = 'Text sequence length')
parser.add_argument('--depth', default = 32, type = int,
help = 'Model depth')
parser.add_argument('--heads', default = 16, type = int,
help = 'Model number of heads')
parser.add_argument('--loss_img_weight', default = 7.0, type = float,
help = 'Image loss weight')
parser.add_argument('--keep_prob', default = 1.0, type = float,
help = 'token keep prob')
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
print("====="*10)
print("args")
print(args)
print("====="*10)
#random seed fix
seed_everything(args.seed)
gpus = args.gpus
args.world_size = args.gpus
args.base_lr = args.learning_rate
args.learning_rate = args.learning_rate * args.world_size * args.batch_size
# tokenizer
if exists(args.bpe_path):
klass = HugTokenizer if args.hug else YttmTokenizer
tokenizer = klass(args.bpe_path)
#args.num_text_tokens = tokenizer.vocab_size
tokenizer = build_tokenizer('tokenizer', context_length=80, lowercase=True, dropout=None)
# pororo
tokenizer.add_tokens(['pororo', 'loopy', 'eddy', 'harry', 'poby', 'tongtong', 'crong', 'rody', 'petty'])
args.num_text_tokens = tokenizer.get_vocab_size()
print(f'Using BPE model with vocab size: {args.num_text_tokens}')
default_root_dir = args.log_dir
limit_train_batches = 1.0
limit_test_batches = 1.0
# model (EVQVAE)
vae = EMAVQVAE.load_from_checkpoint(args.vae_path)
vae.setup_eval()
print(f'Loaded VAE with codebook size: {vae.num_tokens}')
model = Net2NetTransformer(args=args, batch_size=args.batch_size, learning_rate=args.learning_rate, vae=vae, keep_prob = args.keep_prob, cond_stage_key='text', special_case_img_seq_len=args.special_case_img_seq_len, infer_name=args.infer_name)
model = model.load_from_checkpoint(vae=vae, checkpoint_path=args.ckpt_path, infer_name=args.infer_name)
datamodule = StoryTextImageDataModule(args.data_dir,
args.batch_size, args.num_workers,
args.img_size, args.text_seq_len,
args.resize_ratio,args.truncate_captions,
tokenizer,
dataset_size = args.dataset_size)
trainer = Trainer(gpus= gpus, default_root_dir=default_root_dir,
max_epochs=args.epochs, progress_bar_refresh_rate=args.refresh_rate,precision=args.precision,
accelerator='ddp', accumulate_grad_batches=args.ga_steps,
gradient_clip_val=args.clip_grad_norm,
num_sanity_val_steps=args.num_sanity_val_steps,
limit_train_batches=limit_train_batches,limit_test_batches=limit_test_batches,
resume_from_checkpoint = args.ckpt_path)
trainer.test(model, datamodule=datamodule)