-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathsolver_evaluate.py
271 lines (210 loc) · 10.4 KB
/
solver_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import time
import numpy as np
import torch
import torch.optim as optim
import torch.nn.functional as F
from torch.optim import lr_scheduler
from tensorboardX import SummaryWriter
from model import model_parser
from model import PoseLoss
from pose_utils import *
from itertools import islice
def get_query_items(data_loader, query_list):
data_size = len(query_list)
images = torch.zeros((data_size, 3, 224, 224))
poses = torch.zeros((data_size, 7))
for i, idx in enumerate(query_list):
(image, pose, _, _) = data_loader.dataset.__getitem__(idx)
images[i, :] = image
poses[i, :] = pose
return images, poses
class Solver():
def __init__(self, data_loader, config):
self.data_loader = data_loader
self.config = config
# do not use dropout if not bayesian mode
# if not self.config.bayesian:
# self.config.dropout_rate = 0.0
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.model = model_parser(self.config.model, self.config.fixed_weight, self.config.dropout_rate,
self.config.bayesian)
self.criterion = PoseLoss(self.device, self.config.sx, self.config.sq, self.config.learn_beta)
self.print_network(self.model, self.config.model)
self.data_name = self.config.image_path.split('/')[-1]
# self.data_name = 'NCLT_cam4_2seqs_3m'
self.model_save_path = 'models_%s' % self.data_name
self.summary_save_path = 'summary_%s' % self.data_name
if self.config.pretrained_model:
self.load_pretrained_model()
if self.config.sequential_mode:
self.set_sequential_mode()
# Inner Functions #
def set_sequential_mode(self):
if self.config.sequential_mode == 'model':
self.model_save_path = 'models/%s/models_%s' % (self.config.sequential_mode, self.config.model)
self.summary_save_path = 'summaries/%s/summary_%s' % (self.config.sequential_mode, self.config.model)
elif self.config.sequential_mode == 'fixed_weight':
self.model_save_path = 'models/%s/models_%d' % (self.config.sequential_mode, int(self.config.fixed_weight))
self.summary_save_path = 'summaries/%s/summary_%d' % (
self.config.sequential_mode, int(self.config.fixed_weight))
elif self.config.sequential_mode == 'batch_size':
self.model_save_path = 'models/%s/models_%d' % (self.config.sequential_mode, self.config.batch_size)
self.summary_save_path = 'summaries/%s/summary_%d' % (self.config.sequential_mode, self.config.batch_size)
elif self.config.sequential_mode == 'learning_rate':
self.model_save_path = 'models/%s/models_%f' % (self.config.sequential_mode, self.config.lr)
self.summary_save_path = 'summaries/%s/summary_%f' % (self.config.sequential_mode, self.config.lr)
elif self.config.sequential_mode == 'beta':
self.model_save_path = 'models/%s/models_%d' % (self.config.sequential_mode, self.config.beta)
self.summary_save_path = 'summaries/%s/summary_%d' % (self.config.sequential_mode, self.config.beta)
else:
assert 'Unvalid sequential mode'
def load_pretrained_model(self):
model_path = self.model_save_path + '/%s_net.pth' % self.config.pretrained_model
self.model.load_state_dict(torch.load(model_path))
print('Load pretrained network: ', model_path)
def print_network(self, model, name):
num_params = 0
for param in model.parameters():
num_params += param.numel()
print('*' * 20)
print(name)
print(model)
print('*' * 20)
def loss_func(self, input, target):
diff = torch.norm(input - target, dim=1)
diff = torch.mean(diff)
return diff
def calc_negative_distances(self, feat_out, pos_true):
batch_size = feat_out.size(0)
query_idx = [i for i in range(batch_size)]
pair_list = []
for idx in query_idx:
pn_list = []
neg_list = np.array([n for n in range(batch_size) if n != idx])
pos_anchor = pos_true[idx, :]
pos_neg = pos_true[neg_list, :]
pos_diff = F.pairwise_distance(pos_anchor, pos_neg)
pos_diff = pos_diff.cpu().data.numpy()
# To discard near node to the anchor node
neg_list = neg_list[np.where(pos_diff > 10)] # 앵커와 10m 이내에 있는 neg set들의 인덱스 리스트
# print("len(false_list)", false_list.size)
#
# if false_list.size > 0:
#
# print("false_list", false_list)
# filt_neg_list = []
#
# for k in range(len(neg_list)):
# print("k", k)
# if k in false_list:
# continue
#
# filt_neg_list.append(neg_list[k])
#
# neg_list = filt_neg_list
feat_anchor = feat_out[idx, :]
feat_neg = feat_out[neg_list, :]
neg_dist = F.pairwise_distance(feat_anchor, feat_neg)
min_dist, min_idx = torch.min(neg_dist.unsqueeze(0), dim=1)
pair_list.append([neg_list[min_idx], min_dist])
return pair_list
def evaluate(self):
f = open(self.summary_save_path + '/test_result.csv', 'w')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.model = self.model.to(self.device)
self.model.eval()
if self.config.test_model is None:
test_model_path = self.model_save_path + '/best_net.pth'
else:
test_model_path = self.model_save_path + '/{}_net.pth'.format(self.config.test_model)
print('Load pretrained model: ', test_model_path)
self.model.load_state_dict(torch.load(test_model_path))
total_pos_loss = 0
total_ori_loss = 0
pos_loss_arr = []
ori_loss_arr = []
true_pose_list = []
estim_pose_list = []
estim_feat_list = []
if self.config.bayesian:
pred_mean = []
pred_var = []
num_data = len(self.data_loader)
for i, (inputs, poses) in enumerate(self.data_loader):
print(i)
inputs = inputs.to(self.device)
# forward
if self.config.bayesian:
num_bayesian_test = 100
pos_array = torch.Tensor(num_bayesian_test, 3)
ori_array = torch.Tensor(num_bayesian_test, 4)
for i in range(num_bayesian_test):
pos_single, ori_single, _ = self.model(inputs)
pos_array[i, :] = pos_single
ori_array[i, :] = F.normalize(ori_single, p=2, dim=1)
pose_quat = torch.cat((pos_array, ori_array), 1).detach().cpu().numpy()
pred_pose, pred_var = fit_gaussian(pose_quat)
pos_var = np.sum(pred_var[:3])
ori_var = np.sum(pred_var[3:])
pos_out = pred_pose[:3]
ori_out = pred_pose[3:]
else:
pos_out, ori_out, feat_out = self.model(inputs)
pos_out = pos_out.squeeze(0).detach().cpu().numpy()
ori_out = F.normalize(ori_out, p=2, dim=1)
ori_out = quat_to_euler(ori_out.squeeze(0).detach().cpu().numpy())
print('pos out', pos_out)
print('ori_out', ori_out)
pos_true = poses[:, :3].squeeze(0).numpy()
ori_true = poses[:, 3:].squeeze(0).numpy()
ori_true = quat_to_euler(ori_true)
print('pos true', pos_true)
print('ori true', ori_true)
loss_pos_print = array_dist(pos_out, pos_true)
loss_ori_print = array_dist(ori_out, ori_true)
true_pose_list.append(np.hstack((pos_true, ori_true)))
estim_feat_list.append(feat_out.squeeze(0).detach().cpu().numpy())
if loss_pos_print < 20:
estim_pose_list.append(np.hstack((pos_out, ori_out)))
# ori_out = F.normalize(ori_out, p=2, dim=1)
# ori_true = F.normalize(ori_true, p=2, dim=1)
#
# loss_pos_print = F.pairwise_distance(pos_out, pos_true, p=2).item()
# loss_ori_print = F.pairwise_distance(ori_out, ori_true, p=2).item()
# loss_pos_print = F.l1_loss(pos_out, pos_true).item()
# loss_ori_print = F.l1_loss(ori_out, ori_true).item()
# loss_pos_print = self.loss_func(pos_out, pos_true).item()
# loss_ori_print = self.loss_func(ori_out, ori_true).item()
print(pos_out)
print(pos_true)
total_pos_loss += loss_pos_print
total_ori_loss += loss_ori_print
pos_loss_arr.append(loss_pos_print)
ori_loss_arr.append(loss_ori_print)
if self.config.bayesian:
print('{}th Error: pos error {:.3f} / ori error {:.3f}'.format(i, loss_pos_print, loss_ori_print))
print('{}th std: pos / ori', pos_var, ori_var)
f.write('{},{},{},{}\n'.format(loss_pos_print, loss_ori_print, pos_var, ori_var))
else:
print('{}th Error: pos error {:.3f} / ori error {:.3f}'.format(i, loss_pos_print, loss_ori_print))
# position_error = sum(pos_loss_arr)/len(pos_loss_arr)
# rotation_error = sum(ori_loss_arr)/len(ori_loss_arr)
position_error = np.median(pos_loss_arr)
rotation_error = np.median(ori_loss_arr)
print('=' * 20)
print('Overall median pose errer {:.3f} / {:.3f}'.format(position_error, rotation_error))
print('Overall average pose errer {:.3f} / {:.3f}'.format(np.mean(pos_loss_arr), np.mean(ori_loss_arr)))
f.close()
if self.config.save_result:
f_true = self.summary_save_path + '/pose_true.csv'
f_estim = self.summary_save_path + '/pose_estim.csv'
f_feat = self.summary_save_path + '/feat_estim.csv'
np.savetxt(f_true, true_pose_list, delimiter=',')
np.savetxt(f_estim, estim_pose_list, delimiter=',')
np.savetxt(f_feat, estim_feat_list, delimiter=',', fmt='%.4f')
if self.config.sequential_mode:
f = open(self.summary_save_path + '/test.csv', 'w')
f.write('{},{}'.format(position_error, rotation_error))
f.close()
# return position_error, rotation_error