Skip to content

Latest commit

 

History

History
113 lines (102 loc) · 3.3 KB

README.md

File metadata and controls

113 lines (102 loc) · 3.3 KB

DS503_OPTION-KNOWLEDGE CONCEPT AWARE KNOWLEDGE TRACING

Dataset

  • Ednet
  • Eedi_a
  • Eedi_b

Download Link


Model


Project Structure

├── ckpts
├── data
│   ├── ednet
│   |   ├── method_1
│   |   └── method_2
│   ├── eedi_a
│   |   ├── method_1
│   |   └── method_2
│   └── eedi_b
│       ├── method_1
│       └── method_2
├── preprocessing
│   ├── data
│   │   ├── ednet
│   |   |   ├── method_1
│   |   |   └── method_2
│   │   ├── eedi_a
│   |   |   ├── method_1
│   |   |   └── method_2
│   │   └── eedi_b
│   |       ├── method_1
│   |       └── method_2
│   ├── method1_preprocessing(py)
│   └── method2_preprocessing(ipynb)
│   
├── train.py
├── dkt.py
├── dkt_plus.py
├── kqn.py
├── sakt.py
├── saint.py
├── atkt.py
└── utils.py
Folder Usage
ckpts save checkpoint model
data data for model training
preprocessing data, code for preprocessing

Environment

    conda create -m kt
    conda activate kt
    conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
    pip install -r requirements.txt

User Guide

Preprocessing (Optional)

  1. Download dataset for preprocessing

  2. Execute preprocessing code in preprocessing folder

    Method 1

    • ednet
    python method1_preprocessing_ednet.py
    
    • eedi_a
    python method1_preprocessing_eedi_a.py
    
    • eedi_b
    python method1_preprocessing_eedi_b.py
    

    Method 2

    Execute method2_preprocessing ipynb file for each dataset in preprocessing folder

Train

  1. Download dataset for model train

  2. Modify config.json

  3. Execute train.py

    python train.py --model_name dkt --dataset_name eedi_a --method_name method_1 --option no
    

    option

    • model_name
      • dkt, dkt+, kqn, sakt, saint, atkt
    • dataset_name
      • eedi_a, eedi_b, ednet
    • method_name
      • method_1, method_2
    • option
      • no, no_kc, no_option, yes