- Ednet
- Eedi_a
- Eedi_b
- dkt: Deep Knowledge Tracing
- dkt+: Addressing Two Problems in Deep Knowledge Tracing via Prediction-Consistent Regularization
- kqn: Knowledge Query Network for Knowledge Tracing
- sakt: A Self-Attentive model for Knowledge Tracing
- saint: Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing
- atkt: Enhancing Knowledge Tracing via Adversarial Training
├── ckpts
├── data
│ ├── ednet
│ | ├── method_1
│ | └── method_2
│ ├── eedi_a
│ | ├── method_1
│ | └── method_2
│ └── eedi_b
│ ├── method_1
│ └── method_2
├── preprocessing
│ ├── data
│ │ ├── ednet
│ | | ├── method_1
│ | | └── method_2
│ │ ├── eedi_a
│ | | ├── method_1
│ | | └── method_2
│ │ └── eedi_b
│ | ├── method_1
│ | └── method_2
│ ├── method1_preprocessing(py)
│ └── method2_preprocessing(ipynb)
│
├── train.py
├── dkt.py
├── dkt_plus.py
├── kqn.py
├── sakt.py
├── saint.py
├── atkt.py
└── utils.py
Folder | Usage |
---|---|
ckpts | save checkpoint model |
data | data for model training |
preprocessing | data, code for preprocessing |
conda create -m kt
conda activate kt
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
pip install -r requirements.txt
-
Download dataset for preprocessing
-
Execute preprocessing code in
preprocessing
folder- ednet
python method1_preprocessing_ednet.py
- eedi_a
python method1_preprocessing_eedi_a.py
- eedi_b
python method1_preprocessing_eedi_b.py
Execute method2_preprocessing
ipynb
file for each dataset inpreprocessing
folder
-
Download dataset for model train
-
Modify
config.json
-
Execute
train.py
python train.py --model_name dkt --dataset_name eedi_a --method_name method_1 --option no
- model_name
- dkt, dkt+, kqn, sakt, saint, atkt
- dataset_name
- eedi_a, eedi_b, ednet
- method_name
- method_1, method_2
- option
- no, no_kc, no_option, yes
- model_name