-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvisuals.py
executable file
·869 lines (707 loc) · 30.2 KB
/
visuals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
import matplotlib.pyplot as plt
from astropy.visualization import SqrtStretch
from astropy.visualization.mpl_normalize import ImageNormalize
from matplotlib import rcParams
from matplotlib.patches import FancyArrowPatch
from matplotlib.patches import Ellipse
from matplotlib.patches import Circle
import matplotlib.gridspec as gridspec
from .astronomy import AstCalc
from .astronomy import FitsOps
from .io import FileOps
from astropy.io import fits
from astropy.table import Table
from astropy import table
from astropy import coordinates
from astropy import units as u
from astropy.wcs import WCS
from astropy.visualization import ZScaleInterval
from astropy.stats import sigma_clip, mad_std
from astroquery.skyview import SkyView
from astroquery.xmatch import XMatch
from PIL import Image
# import aplpy
import numpy as np
import sep
import os
import glob
class StarPlot:
def star_plot(self, image_data, objects, mark_color="red"):
"""
Source plot module.
@param image_data: data part of the FITS image
@type image_data: numpy array
@param objects: Return of the detect_sources
function with skycoords.
@type objects: astropy.table
@param mark_color: Color of the plot marks
@type mark_color: str
@returns: boolean
"""
figsize = (8, 8)
data = image_data.astype(float)
fig, ax = plt.subplots(figsize=figsize)
zscale = ZScaleInterval(nsamples=1000)
ax.imshow(zscale(data), cmap="gray", aspect="auto")
# plot an ellipse for each object
for i in range(len(objects)):
e = Ellipse(xy=(objects['X_IMAGE'][i], objects['Y_IMAGE'][i]),
width=6 * objects['A_IMAGE'][i],
height=6 * objects['B_IMAGE'][i],
angle=objects['A_IMAGE'][i] * 180. / np.pi)
e.set_facecolor('none')
e.set_edgecolor(mark_color)
ax.add_artist(e)
plt.show()
return True
def asteroids_plot(self,
image_path=None,
ra=None,
dec=None,
odate=None,
time_travel=1,
radi=6,
max_mag=20.0,
circle_color='yellow',
arrow_color='red',
invert_yaxis="True"):
"""
Source plot module.
@param image_path: data part of the FITS image
@type image_path: numpy array
@param ra: RA coordinate of target area.
@type ra: str in "HH MM SS"
@param dec: DEC coordinate of target area
@type dec: str in "+DD MM SS"
@param radi: Radius in arcmin.
@type radi: float
@param odate: Ephemeris date of observation in date
@type odate: "2017-08-15T19:50:00.95" format in str
@param time_travel: Jump into time after given date (in hour).
@type time_travel: float
@param max_mag: Limit magnitude to be queried object(s)
@type max_mag: float
@param circle_color: Color of the asteroids marks
@type circle_color: str
@param arrow_color: Color of the asteroids direction marks
@type arrow_color: str
@param invert_yaxis: invert y axis or not.
@type invert_yaxis: bool
@returns: boolean
"""
from .catalog import Query
# filename = get_pkg_data_filename(image_path)
rcParams['figure.figsize'] = [10., 8.]
# rcParams.update({'font.size': 10})
if image_path:
hdu = fits.open(image_path)[0]
elif not image_path and ra and dec and odate:
co = coordinates.SkyCoord('{0} {1}'.format(ra, dec),
unit=(u.hourangle, u.deg),
frame='icrs')
print('Target Coordinates:',
co.to_string(style='hmsdms', sep=':'),
'in {0} arcmin'.format(radi))
try:
server_img = SkyView.get_images(position=co,
survey=['DSS'],
radius=radi * u.arcmin)
hdu = server_img[0][0]
except Exception as e:
print("SkyView could not get the image from DSS server.")
print(e)
raise SystemExit
wcs = WCS(hdu.header)
data = hdu.data.astype(float)
bkg = sep.Background(data)
# bkg_image = bkg.back()
# bkg_rms = bkg.rms()
data_sub = data - bkg
m, s = np.mean(data_sub), np.std(data_sub)
ax = plt.subplot(projection=wcs)
plt.imshow(data_sub, interpolation='nearest',
cmap='gray', vmin=m - s, vmax=m + s, origin='lower')
ax.coords.grid(True, color='white', ls='solid')
ax.coords[0].set_axislabel('Galactic Longitude')
ax.coords[1].set_axislabel('Galactic Latitude')
overlay = ax.get_coords_overlay('icrs')
overlay.grid(color='white', ls='dotted')
overlay[0].set_axislabel('Right Ascension (ICRS)')
overlay[1].set_axislabel('Declination (ICRS)')
sb = Query()
ac = AstCalc()
if image_path:
fo = FitsOps(image_path)
if not odate:
odate = fo.get_header('date-obs')
else:
odate = odate
ra_dec = ac.center_finder(image_path, wcs_ref=True)
elif not image_path and ra and dec and odate:
odate = odate
ra_dec = [co.ra, co.dec]
request0 = sb.find_skybot_objects(odate,
ra_dec[0].degree,
ra_dec[1].degree,
radius=radi)
if request0[0]:
asteroids = request0[1]
elif request0[0] is False:
print(request0[1])
raise SystemExit
request1 = sb.find_skybot_objects(odate,
ra_dec[0].degree,
ra_dec[1].degree,
radius=float(radi),
time_travel=time_travel)
if request1[0]:
asteroids_after = request1[1]
elif request1[0] is False:
print(request1[1])
raise SystemExit
for i in range(len(asteroids)):
if float(asteroids['m_v'][i]) <= max_mag:
c = coordinates.SkyCoord('{0} {1}'.format(
asteroids['ra(h)'][i],
asteroids['dec(deg)'][i]),
unit=(u.hourangle, u.deg),
frame='icrs')
c_after = coordinates.SkyCoord('{0} {1}'.format(
asteroids_after['ra(h)'][i],
asteroids_after['dec(deg)'][i]),
unit=(u.hourangle, u.deg),
frame='icrs')
r = FancyArrowPatch(
(c.ra.degree, c.dec.degree),
(c_after.ra.degree, c_after.dec.degree),
arrowstyle='->',
mutation_scale=10,
transform=ax.get_transform('icrs'))
p = Circle((c.ra.degree, c.dec.degree), 0.005,
edgecolor=circle_color,
facecolor='none',
transform=ax.get_transform('icrs'))
ax.text(c.ra.degree,
c.dec.degree - 0.007,
asteroids['name'][i],
size=12,
color='black',
ha='center',
va='center',
transform=ax.get_transform('icrs'))
r.set_facecolor('none')
r.set_edgecolor(arrow_color)
ax.add_patch(p)
ax.add_patch(r)
# plt.gca().invert_xaxis()
if invert_yaxis == "True":
plt.gca().invert_yaxis()
plt.show()
print(asteroids)
return True
def lc_plot_general(self,
result_file_path=None,
xcol='jd',
ycol='magt_i',
errcol='magt_i_err',
mark_color="blue",
bar_color="red"):
"""
Plot light curve of photometry result.
@param result_file_path: Result file path
@type result_file_path: path
@param xcol: X-axis data for plotting
@type xcol: array
@param ycol: Y-axis data for plotting
@type ycol: array
@param errcol: Error bar data for plotting
@type errcol: array
@param mark_color: Marker color
@type mark_color: str
@param bar_color: Bar marker color
@type bar_color: str
@return: str
"""
print("Plotting asteroid's LC...")
fn = os.path.basename(result_file_path).split('.')[0]
result_file = Table.read(result_file_path,
format='ascii.commented_header')
result_unique_by_keys = table.unique(result_file, keys='jd')
rcParams['figure.figsize'] = [10., 8.]
figlc = plt.figure(1)
gs = gridspec.GridSpec(2, 1, height_ratios=[6, 2])
# Two subplots, the axes array is 1-d
axlc1 = figlc.add_subplot(gs[0])
axlc2 = figlc.add_subplot(gs[1])
axlc1.set_title(fn)
filtered_data = sigma_clip(result_unique_by_keys[ycol], sigma=3,
iters=10, stdfunc=mad_std)
axlc1.errorbar(
result_unique_by_keys[xcol][np.logical_not(filtered_data.mask)],
result_unique_by_keys[ycol][np.logical_not(filtered_data.mask)],
yerr=result_unique_by_keys[errcol][np.logical_not(
filtered_data.mask)],
fmt='o',
ecolor=bar_color,
color=mark_color,
capsize=5,
elinewidth=2)
axlc1.invert_yaxis()
axlc2.set_xlabel("JD", fontsize=12)
axlc1.set_ylabel("Magnitude (R - INST)", fontsize=12)
axlc2.set_ylabel("STD", fontsize=12)
fit = np.polyfit(
result_unique_by_keys[xcol][np.logical_not(filtered_data.mask)],
result_unique_by_keys[errcol][np.logical_not(filtered_data.mask)],
1)
fit_fn = np.poly1d(fit)
axlc2.plot(
result_unique_by_keys[xcol][np.logical_not(filtered_data.mask)],
result_unique_by_keys[errcol][np.logical_not(filtered_data.mask)],
'yo',
result_unique_by_keys[xcol][np.logical_not(filtered_data.mask)],
fit_fn(result_unique_by_keys[xcol][np.logical_not(
filtered_data.mask)]),
'--k')
axlc1.grid(True)
axlc2.grid(True)
axlc1.legend(loc=2, numpoints=1)
figlc.savefig("{0}/{1}_jd_vs_magi_lc.pdf".format(os.getcwd(), fn))
# plt.show()
def lc_plot_std_mag(self, result_file_path=None,
xcol='magc_i',
ycol='star_Rmag',
errcol='magc_i_err',
mark_color="blue",
bar_color="red"):
print("Plotting asteroid's LC...")
# Fixing random state for reproducibility
np.random.seed(19680801)
fn = os.path.basename(result_file_path).split('.')[0]
# Two subplots, the axes array is 1-d
# Plotting settings
rcParams['figure.figsize'] = [10., 8.]
lc = plt.figure(1)
lc_ast_std = plt.figure()
gs = gridspec.GridSpec(2, 1, height_ratios=[6, 2])
# magi vs catalogue
lc1 = lc.add_subplot(gs[0])
lc1.set_title(fn)
lc1.grid(True)
lc1.set_ylabel("Magnitude (R - NOMAD1)", fontsize=12)
lc1.invert_yaxis()
# magi vs STD
lc2 = lc.add_subplot(gs[1])
lc2.set_title(fn)
lc2.grid(True)
lc2.set_xlabel("Magnitude (Inst)", fontsize=12)
lc2.set_ylabel("$STD$", fontsize=12)
# magt vs estimated mag
lc3 = lc_ast_std.add_subplot(gs[0])
lc3.set_title(fn)
lc3.legend(loc=2, numpoints=1)
lc3.grid(True)
lc3.invert_yaxis()
lc3.set_xlabel("$JD$", fontsize=12)
lc3.set_ylabel("Magnitude (R - Estimated from NOMAD1)",
fontsize=12)
# Plotting settings
result_file = Table.read(result_file_path,
format='ascii.commented_header')
# result_unique_by_keys = table.unique(result_file, keys='nomad1')
result_unique_by_jd = table.unique(result_file, keys='jd')
magt_std_list = []
for jd in result_unique_by_jd['jd']:
frame_results = result_file[(result_file['jd'] == jd)]
# for reject outliers
filtered_frame_results = sigma_clip(frame_results['magt_i'],
sigma=3,
iters=10, stdfunc=mad_std)
# use only not rejected data (because umask used)
filtered_f_umask = np.logical_not(filtered_frame_results.mask)
# magci vs catalogue with error bar
lc1.errorbar(
frame_results[xcol][filtered_f_umask],
frame_results[ycol][filtered_f_umask],
yerr=frame_results[errcol][filtered_f_umask],
fmt='o',
ecolor=bar_color,
color=mark_color,
capsize=5,
elinewidth=2)
# magci vs catalogue fit calculation
fit = np.polyfit(
frame_results[xcol][filtered_f_umask],
frame_results[ycol][filtered_f_umask],
1)
fit_fn = np.poly1d(fit)
magt_to_std = fit_fn(frame_results['magt_i'][filtered_f_umask])
magt_std_list.append([jd, magt_to_std[0], frame_results['magt_i_err'][0]])
# magci vs catalogue fit plot
lc1.plot(
frame_results[xcol][filtered_f_umask],
fit_fn(frame_results[xcol][filtered_f_umask]),
'--k')
# magi vs catalogue error fit calc.
fit = np.polyfit(
frame_results[xcol][filtered_f_umask],
frame_results[errcol][filtered_f_umask],
1)
fit_fn = np.poly1d(fit)
# magi vs STD fit plot
lc2.plot(
frame_results[xcol][filtered_f_umask],
frame_results[errcol][filtered_f_umask],
'yo',
frame_results[xcol][filtered_f_umask],
fit_fn(frame_results[xcol][filtered_f_umask]),
'--k')
# jd vs magt_std
jd_vs_magt = np.asanyarray(magt_std_list)
filtered_jd_vs_magt = sigma_clip(jd_vs_magt[:, 1],
sigma=3,
iters=10, stdfunc=mad_std)
# use only not rejected data (because umask used)
filtered_f_umask = np.logical_not(filtered_jd_vs_magt.mask)
# jd vs magt plotting with error bars
lc3.errorbar(
jd_vs_magt[:, 0][filtered_f_umask],
jd_vs_magt[:, 1][filtered_f_umask],
yerr=jd_vs_magt[:, 2][filtered_f_umask],
fmt='o',
ecolor=bar_color,
color=mark_color,
capsize=5,
elinewidth=2,
label='{0} - R (Estimated)'.format(fn))
lc3.legend(loc=2, numpoints=1)
lc_ast_std.savefig("{0}/{1}_jd_vs_mag_std_lc.pdf".format(os.getcwd(), fn))
# plt.show()
def find_best_comp(self, result_file_path=None,
best_comparison_star=None):
result_file = Table.read(result_file_path,
format='ascii.commented_header')
# read comparison star list
# and check manual assigned comp star
if best_comparison_star is None:
result_unique_by_cat = table.unique(result_file, keys='nomad1')
else:
result_unique_by_cat = table.unique(
result_file[(result_file['nomad1'] == best_comparison_star)],
keys='nomad1')
std_list = []
t_c_list = []
# calculates diff_mag for all target objects and comp. stars
for star in result_unique_by_cat['nomad1']:
frame_results = result_file[(result_file['nomad1'] == star)]
# diff phot.
frame_results['t-c'] = frame_results['magt_i'] - frame_results['magc_i']
# error propagation
frame_results['t-c-err'] = np.sqrt(
np.power(frame_results['magt_i_err'], 2) + np.power(frame_results['magc_i_err'], 2))
# extracting usefull columns
t_c_list.append(frame_results['ast_num', 'nomad1', 'jd', 't-c', 't-c-err'])
# calculating all t-c stars STD then adding list
std_list.append(np.std(frame_results['t-c']))
# calculating all STD's mean and its index number in the list
mean_idx = (np.abs(np.asanyarray(std_list) - np.mean(std_list))).argmin()
# choosing STD with min, mean and max stars
diff_stats = {'min': [std_list.index(min(std_list)), min(std_list)],
'mean': [mean_idx, np.mean(std_list)],
'max': [std_list.index(max(std_list)), max(std_list)]
}
# getting these diff mags and their other columns
results = {'with_min_comp': t_c_list[diff_stats['min'][0]],
'with_mean_comp': t_c_list[diff_stats['mean'][0]],
'with_max_comp': t_c_list[diff_stats['max'][0]]
}
return results
def lc_plot_diff_mag(self, result_file_path=None,
best_comparison_star=None,
mark_color="blue",
bar_color="red"):
print("Plotting asteroid's LC...")
fn = os.path.basename(result_file_path).split('.')[0]
# Two subplots, the axes array is 1-d
# Plotting settings
rcParams['figure.figsize'] = [10., 8.]
lc_ast_diff = plt.figure()
gs = gridspec.GridSpec(2, 1, height_ratios=[6, 2])
results = self.find_best_comp(result_file_path=result_file_path,
best_comparison_star=best_comparison_star)['with_mean_comp']
filtered_jd_vs_mag_diff = sigma_clip(results['t-c'],
sigma=3,
iters=10, stdfunc=mad_std)
# use only not rejected data (because umask used)
filtered_diff_umask = np.logical_not(filtered_jd_vs_mag_diff.mask)
# jd vs magt - magi
lc = lc_ast_diff.add_subplot(gs[0])
lc.set_title(fn)
lc.legend(loc=2, numpoints=1)
lc.grid(True)
lc.invert_yaxis()
lc.set_xlabel("$JD$", fontsize=12)
lc.set_ylabel("Diff Mag. ({0} - {1})".format(
results['ast_num'][0],
results['nomad1'][0]),
fontsize=12)
# Plotting settings
lc.errorbar(
results['jd'][filtered_diff_umask],
results['t-c'][filtered_diff_umask],
yerr=results['t-c-err'][filtered_diff_umask],
fmt='o',
ecolor=bar_color,
color=mark_color,
capsize=5,
elinewidth=2,
label='{0} - {1}'.format(fn, results['nomad1'][0]))
lc.legend(loc=2, numpoints=1)
lc_ast_diff.savefig("{0}/{1}_jd_vs_diff_mag_lc.pdf".format(os.getcwd(), fn))
# plt.show()
def catalog_plot(self, fitsfile, catalog):
try:
import f2n
except ImportError:
print('Python cannot import f2n. Make sure f2n is installed.')
raise SystemExit
image = f2n.fromfits(fitsfile, verbose=False)
image.setzscale('auto', 'auto')
image.makepilimage('log', negative=False)
print('\033[1;34mPlotting sources on {0}...\033[0m'.format(catalog))
extension = os.path.splitext(os.path.basename(catalog))[1]
if extension == '.cat':
coordinates = np.genfromtxt(catalog, delimiter=None,
comments='#')[:, [1, 2]]
elif extension == '.txt':
coordinates = np.genfromtxt(catalog, delimiter=None,
comments='#')[:, [0, 1]]
elif extension == '.cnd':
coordinates = np.genfromtxt(catalog, delimiter=',', comments='#',
skip_header=1)[:, [1, 2]]
for i, coordinate in enumerate(coordinates):
x, y = coordinate[0], coordinate[1]
label = '{0}'.format(i + 1)
image.drawcircle(x,
y,
r=10,
colour=(0, 255, 0),
label=label)
image.writetitle(os.path.basename(fitsfile))
fitshead, fitsextension = os.path.splitext(fitsfile)
image.tonet('{0}.png'.format(fitshead))
print('\033[1;34mAll sources plotted on: {0}.png\033[0m'.format(fitshead))
return True
def object_plot(self, image_path, ra, dec, mark_color="red"):
"""
Source plot module.
@param image_data: data part of the FITS image
@type image_data: numpy array
@param ra: RA coordinate of object, skycoords.
@type ra: string
@param dec: DEC coordinate of object, skycoords.
@type dec: string
@param mark_color: Color of the plot marks
@type mark_color: str
@returns: boolean
"""
try:
import f2n
except ImportError:
print('Python cannot import f2n. Make sure f2n is installed.')
raise SystemExit
if image_path:
hdu = fits.open(image_path)[0]
else:
print("No image provided!")
raise SystemExit
wcs = WCS(hdu.header)
# plot an ellipse for each object
if ":" not in (ra or dec):
co = coordinates.SkyCoord('{0} {1}'.format(ra, dec),
unit=(u.deg, u.deg),
frame='icrs')
else:
co = coordinates.SkyCoord('{0} {1}'.format(ra, dec),
unit=(u.hourangle, u.deg),
frame='icrs')
print('Target Coordinates:',
co.to_string(style='hmsdms', sep=':'))
image = f2n.fromfits(image_path, verbose=False)
image.setzscale('auto', 'auto')
image.makepilimage('log', negative=False)
ac = AstCalc()
x, y = ac.sky2xy(image_path, ra, dec)
label = '{0}'.format(co.to_string(style='hmsdms', sep=':'))
image.drawcircle(x,
y,
r=10,
colour=(0, 255, 0),
label=label)
image.writetitle(os.path.basename(image_path))
fitshead, fitsextension = os.path.splitext(image_path)
image.tonet('{0}.png'.format(fitshead))
print('\033[1;34mSource plotted on: {0}.png\033[0m'.format(fitshead))
return True
def fits2png(self, image_path):
"""
Source plot module.
@param image_data: data part of the FITS image
@type image_data: numpy array
@param ra: RA coordinate of object, skycoords.
@type ra: string
@param dec: DEC coordinate of object, skycoords.
@type dec: string
@param mark_color: Color of the plot marks
@type mark_color: str
@returns: boolean
"""
try:
import f2n
except ImportError:
print('Python cannot import f2n. Make sure f2n is installed.')
raise SystemExit
if image_path:
hdu = fits.open(image_path)[0]
else:
print("No image provided!")
raise SystemExit
image = f2n.fromfits(image_path, verbose=False)
image.setzscale('auto', 'auto')
image.makepilimage('log', negative=False)
image.writetitle(os.path.basename(image_path))
fitshead, fitsextension = os.path.splitext(image_path)
image.tonet('{0}.png'.format(fitshead))
return True
def rota(self,
image_path=None,
object_name=None,
ephemeris_file=None,
odate=None,
radius=None,
srg_radius=10,
time_travel=1,
min_mag=0,
max_mag=17.0,
circle_color='yellow',
arrow_color='red',
invert_yaxis="True"):
"""
Moving object trajectory plotter.
Parameters
----------
ephemeris_file: file object
Ephemeris file.
object_name : str
Asteroid or moving object name.
odate : str
Ephemeris date of observation in date.
min_mag : list or float
Faintest magnitude to be plotted.
Default is '20.0'.
max_mag : float
Brightest magnitude to be plotted.
Default is '15.0'.
circle_color : str
Moving object mark color
arrow_color : Trajectory color
Returns
-------
'A table object or file'
"""
from .catalog import Query
# filename = get_pkg_data_filename(image_path)
rcParams['figure.figsize'] = [12., 12.]
# rcParams.update({'font.size': 10})
fo = FileOps()
srg = fo.srg_ephemeris_reader("/Users/ykilic/Downloads/RTT-150_20200109-1708_20200110-0423.txt")
data_len = len(srg)
mid = int(len(srg) / 2)
data_mid_date = srg['Date-Time'][mid]
ra = srg['RA2000'][mid]
dec = srg['DECL2000'][mid]
odate = data_mid_date
if radius is None:
ra_first = srg['RA2000'][0]
dec_first = srg['DECL2000'][0]
ra_last = srg['RA2000'][data_len-1]
dec_last = srg['DECL2000'][data_len-1]
c_first = coordinates.SkyCoord(ra_first, dec_first, unit=(u.hourangle, u.deg), frame='icrs')
c_last = coordinates.SkyCoord(ra_last, dec_last, unit=(u.hourangle, u.deg), frame='icrs')
radius = c_first.separation(c_last)
radius = radius.arcmin
if image_path is not None:
hdu = fits.open(image_path)[0]
elif (image_path is None) and ra and dec and odate:
co = coordinates.SkyCoord('{0} {1}'.format(ra, dec),
unit=(u.hourangle, u.deg),
frame='icrs')
print('Target Coordinates:',
co.to_string(style='hmsdms', sep=':'),
'in {0} arcmin'.format(radius))
try:
print (co)
server_img = SkyView.get_images(position=co,
survey=['DSS'],
radius=radius * u.arcmin)
hdu = server_img[0][0]
except Exception as e:
print("SkyView could not get the image from DSS server.")
print(e)
raise SystemExit
fig = aplpy.FITSFigure(hdu, figsize=(12, 12))
srg_c = coordinates.SkyCoord(srg['RA2000'], srg['DECL2000'], unit=(u.hourangle, u.deg), frame='icrs')
srg['APLHA_J2000'] = srg_c.ra.degree
srg['DELTA_J2000'] = srg_c.dec.degree
table = XMatch.query(cat1=srg['APLHA_J2000', 'DELTA_J2000', 'RA2000', 'DECL2000'],
cat2='vizier:{}'.format("I/345/gaia2"),
max_distance= srg_radius * u.arcsec, colRA1='APLHA_J2000',
colDec1='DELTA_J2000')
table_pd = table.to_pandas()
table_pd_masked = table_pd[(table_pd['phot_g_mean_mag'] >= min_mag) &
(table_pd['phot_g_mean_mag'] <= max_mag)]
# fig.show_markers(srg['APLHA_J2000'], srg['DELTA_J2000'], edgecolor='green')
fig.show_markers(table_pd_masked['APLHA_J2000'], table_pd_masked['DELTA_J2000'], edgecolor='red')
# fig.show_markers(srg['APLHA_J2000'], srg['DELTA_J2000'], edgecolor='red')
srg_pd = srg.to_pandas()
for i, element in enumerate(table_pd_masked['RA2000']):
srg_pd = srg_pd[srg_pd.RA2000 != element]
srg_best_positions = srg_pd
fig.show_markers(srg_best_positions['APLHA_J2000'], srg_best_positions['DELTA_J2000'], edgecolor='blue')
fig.show_grayscale(invert=True)
fig.add_colorbar()
fig.add_grid()
fig.set_title("{} {}".format(ra, dec))
return srg_best_positions
def multifits2pngs(self, fitsdir):
types = (fitsdir + '/*.fits', fitsdir + '/*.fit',
fitsdir + '/*.fts') # the tuple of file types
fits_grabbed = []
for fits_files in types:
fits_grabbed.extend(glob.glob(fits_files))
if fits_grabbed:
fits_grabbed = sorted(fits_grabbed)
else:
return False
for fits_file in fits_grabbed:
self.fits2png(fits_file)
return True
def make_animation(self, fitsdir):
self.multifits2pngs(fitsdir)
pngdir = fitsdir + '/*.png'
png_out = fitsdir + '/animation.gif'
img, *imgs = [Image.open(f) for f in sorted(glob.glob(pngdir))]
img.save(fp=png_out, format='GIF', append_images=imgs,
save_all=True, duration=200, loop=0)
return True
def crop_roi(self, fits_file, source_x, source_y, roi_box=10, use_pil=False):
body_path, ext = os.path.splitext(fits_file)
fo = FitsOps(fits_file)
source_roi = fo.hdu[0].data[int(source_y - roi_box):int(source_y + roi_box),
int(source_x - roi_box):int(source_x + roi_box)]
norm = ImageNormalize(stretch=SqrtStretch())
plt.axis('off')
plt.imshow(source_roi, cmap='Greys', origin='lower', norm=norm)
plt.savefig('{}_roi.png'.format(body_path), bbox_inches='tight', pad_inches=0, transparent=True)
plt.close()
return source_roi