-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdemo.py
94 lines (80 loc) · 2.91 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import sys
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import numpy as np
import cv2
from ssd import build_ssd
from matplotlib import pyplot as plt
from data import VOCDetection, VOC_ROOT, VOCAnnotationTransform
import random
from data import VOC_CLASSES as labels
model='vgg'
samples=10
display=True
if torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
dir_path = os.path.dirname(os.path.realpath(__file__))
#cwd = os.getcwd()
'''
Build SSD300 in Test Phase
'''
net = build_ssd('test',model,300, 21) # initialize SSD
net.load_weights('weights/ssd_300_VOC0712.pth')
'''
Load Image
'''
testset = VOCDetection(VOC_ROOT, [('2007', 'test')], None, VOCAnnotationTransform())
ids=len(testset.ids)
img_ids = random.sample(range(ids),samples)
for img_id in img_ids:
image = testset.pull_image(img_id)
rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# View the sampled input image before transform
if display:
plt.figure(figsize=(10,10))
plt.imshow(rgb_image)
plt.show()
'''
Pre-process the input.
For SSD, at test time we use a custom BaseTransform callable to resize our image
to 300x300, subtract the dataset's mean rgb values, and swap the color channels
for input to SSD300.
'''
x = cv2.resize(image, (300, 300)).astype(np.float32)
x -= (104.0, 117.0, 123.0)
x = x.astype(np.float32)
x = x[:, :, ::-1].copy()
#plt.imshow(x)
x = torch.from_numpy(x).permute(2, 0, 1)
xx = Variable(x.unsqueeze(0)) # wrap tensor in Variable
if torch.cuda.is_available():
xx = xx.cuda()
y = net(xx)
'''
Parse the Detections and View Results
Filter outputs with confidence scores lower than a threshold Here we choose 60%
'''
top_k=10
plt.figure(figsize=(10,10))
colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist()
plt.imshow(rgb_image) # plot the image for matplotlib
currentAxis = plt.gca()
detections = y.data
# scale each detection back up to the image
scale = torch.Tensor(rgb_image.shape[1::-1]).repeat(2)
for i in range(detections.size(1)):
j = 0
while detections[0,i,j,0] >= 0.6:
score = detections[0,i,j,0]
label_name = labels[i-1]
display_txt = '%s: %.2f'%(label_name, score)
pt = (detections[0,i,j,1:]*scale).cpu().numpy()
coords = (pt[0], pt[1]), pt[2]-pt[0]+1, pt[3]-pt[1]+1
color = colors[i]
currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor=color, linewidth=2))
currentAxis.text(pt[0], pt[1], display_txt, bbox={'facecolor':color, 'alpha':0.5})
j+=1
plt.savefig(os.path.join(dir_path,'demo','output'+str(img_id)+'.png'))