forked from zhixuhao/unet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
127 lines (113 loc) · 5.18 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
import os
import glob
import gdal
import skimage.io as io
import skimage.transform as trans
Sky = [128, 128, 128]
Building = [128, 0, 0]
Pole = [192, 192, 128]
Road = [128, 64, 128]
Pavement = [60, 40, 222]
Tree = [128, 128, 0]
SignSymbol = [192, 128, 128]
Fence = [64, 64, 128]
Car = [64, 0, 128]
Pedestrian = [64, 64, 0]
Bicyclist = [0, 128, 192]
Unlabelled = [0, 0, 0]
COLOR_DICT = np.array([Sky, Building, Pole, Road, Pavement,
Tree, SignSymbol, Fence, Car, Pedestrian, Bicyclist, Unlabelled])
def adjustData(img, mask, flag_multi_class, num_class):
if flag_multi_class:
img = img / 255.0
mask = mask[:, :, :, 0] if (len(mask.shape) == 4) else mask[:, :, 0]
new_mask = np.zeros(mask.shape + (num_class,))
for i in range(num_class):
# for one pixel in the image, find the class in mask and convert it into one-hot vector
# index = np.where(mask == i)
# index_mask = (index[0],index[1],index[2],np.zeros(len(index[0]),dtype = np.int64) + i) if (len(mask.shape) == 4) else (index[0],index[1],np.zeros(len(index[0]),dtype = np.int64) + i)
# new_mask[index_mask] = 1
new_mask[mask == i, i] = 1
new_mask = np.reshape(new_mask, (new_mask.shape[0], new_mask.shape[1] * new_mask.shape[2],
new_mask.shape[3])) if flag_multi_class else np.reshape(new_mask, (
new_mask.shape[0] * new_mask.shape[1], new_mask.shape[2]))
mask = new_mask
elif np.max(img) > 1:
img = img / 255.0
mask = mask / 255
mask[mask > 0.5] = 1
mask[mask <= 0.5] = 0
return img, mask
def trainGenerator(batch_size, train_path, image_folder, mask_folder, aug_dict, image_color_mode="grayscale",
mask_color_mode="grayscale", image_save_prefix="image", mask_save_prefix="mask",
flag_multi_class=False, num_class=2, save_to_dir=None, target_size=(256, 256), seed=1):
'''
can generate image and mask at the same time
use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same
if you want to visualize the results of generator, set save_to_dir = "your path"
'''
image_datagen = ImageDataGenerator(**aug_dict)
mask_datagen = ImageDataGenerator(**aug_dict)
image_generator = image_datagen.flow_from_directory(
train_path,
classes=[image_folder],
class_mode=None,
color_mode=image_color_mode,
target_size=target_size,
batch_size=batch_size,
save_to_dir=save_to_dir,
save_prefix=image_save_prefix,
seed=seed)
mask_generator = mask_datagen.flow_from_directory(
train_path,
classes=[mask_folder],
class_mode=None,
color_mode=mask_color_mode,
target_size=target_size,
batch_size=batch_size,
save_to_dir=save_to_dir,
save_prefix=mask_save_prefix,
seed=seed)
train_generator = zip(image_generator, mask_generator)
for (img, mask) in train_generator:
img, mask = adjustData(img, mask, flag_multi_class, num_class)
yield (img, mask)
def testGenerator(test_path, num_image=30, target_size=(256, 256), flag_multi_class=False, as_gray=True):
for i in range(num_image):
# img = io.imread(os.path.join(test_path, "%d.tif" % i), as_gray=as_gray)
img = gdal.Open(os.path.join(test_path, "%d.tif" % i)).ReadAsArray()
img = np.rollaxis(img, 0, 3)
img = img / 255.0
img = trans.resize(img, target_size)
# img = np.reshape(img, img.shape + (1,)) if (not flag_multi_class) else img
img = np.reshape(img, (1,) + img.shape)
yield img
def geneTrainNpy(image_path, mask_path, flag_multi_class=False, num_class=2, image_prefix="image", mask_prefix="mask",
image_as_gray=True, mask_as_gray=True):
image_name_arr = glob.glob(os.path.join(image_path, "%s*.png" % image_prefix))
image_arr = []
mask_arr = []
for index, item in enumerate(image_name_arr):
img = io.imread(item, as_gray=image_as_gray)
img = np.reshape(img, img.shape + (1,)) if image_as_gray else img
mask = io.imread(item.replace(image_path, mask_path).replace(image_prefix, mask_prefix), as_gray=mask_as_gray)
mask = np.reshape(mask, mask.shape + (1,)) if mask_as_gray else mask
img, mask = adjustData(img, mask, flag_multi_class, num_class)
image_arr.append(img)
mask_arr.append(mask)
image_arr = np.array(image_arr)
mask_arr = np.array(mask_arr)
return image_arr, mask_arr
def labelVisualize(num_class, color_dict, img):
img = img[:, :, 0] if len(img.shape) == 3 else img
img_out = np.zeros(img.shape + (3,))
for i in range(num_class):
img_out[img == i, :] = color_dict[i]
return img_out / 255
def saveResult(save_path, npyfile, flag_multi_class=False, num_class=2):
for i, item in enumerate(npyfile):
img = labelVisualize(num_class, COLOR_DICT, item) if flag_multi_class else item[:, :, 0]
io.imsave(os.path.join(save_path, "%d_predict.png" % i), img)