forked from Holy-Shine/movie_recommend_system
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
120 lines (94 loc) · 5.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class rec_model(nn.Module):
def __init__(self, user_max_dict, movie_max_dict, convParams, embed_dim=32, fc_size=200):
'''
Args:
user_max_dict: the max value of each user attribute. {'uid': xx, 'gender': xx, 'age':xx, 'job':xx}
user_embeds: size of embedding_layers.
movie_max_dict: {'mid':xx, 'mtype':18, 'mword':15}
fc_sizes: fully connect layer sizes. normally 2
'''
super(rec_model, self).__init__()
# --------------------------------- user channel ----------------------------------------------------------------
# user embeddings
self.embedding_uid = nn.Embedding(user_max_dict['uid'], embed_dim)
self.embedding_gender = nn.Embedding(user_max_dict['gender'], embed_dim // 2)
self.embedding_age = nn.Embedding(user_max_dict['age'], embed_dim // 2)
self.embedding_job = nn.Embedding(user_max_dict['job'], embed_dim // 2)
# user embedding to fc: the first dense layer
self.fc_uid = nn.Linear(embed_dim, embed_dim)
self.fc_gender = nn.Linear(embed_dim // 2, embed_dim)
self.fc_age = nn.Linear(embed_dim // 2, embed_dim)
self.fc_job = nn.Linear(embed_dim // 2, embed_dim)
# concat embeddings to fc: the second dense layer
self.fc_user_combine = nn.Linear(4 * embed_dim, fc_size)
# --------------------------------- movie channel -----------------------------------------------------------------
# movie embeddings
self.embedding_mid = nn.Embedding(movie_max_dict['mid'], embed_dim) # normally 32
self.embedding_mtype_sum = nn.EmbeddingBag(movie_max_dict['mtype'], embed_dim, mode='sum')
self.fc_mid = nn.Linear(embed_dim, embed_dim)
self.fc_mtype = nn.Linear(embed_dim, embed_dim)
# movie embedding to fc
self.fc_mid_mtype = nn.Linear(embed_dim * 2, fc_size)
# text convolutional part
# wordlist to embedding matrix B x L x D L=15 15 words
self.embedding_mwords = nn.Embedding(movie_max_dict['mword'], embed_dim)
# input word vector matrix is B x 15 x 32
# load text_CNN params
kernel_sizes = convParams['kernel_sizes']
# 8 kernel, stride=1,padding=0, kernel_sizes=[2x32, 3x32, 4x32, 5x32]
self.Convs_text = [nn.Sequential(
nn.Conv2d(1, 8, kernel_size=(k, embed_dim)),
nn.ReLU(),
nn.MaxPool2d(kernel_size=(15 - k + 1, 1), stride=(1, 1))
).to(device) for k in kernel_sizes]
# movie channel concat
self.fc_movie_combine = nn.Linear(embed_dim * 2 + 8 * len(kernel_sizes), fc_size) # tanh
# BatchNorm layer
self.BN_uid = nn.BatchNorm2d(1)
self.BN_gender = nn.BatchNorm2d(1)
self.BN_age = nn.BatchNorm2d(1)
self.BN_job = nn.BatchNorm2d(1)
self.BN_mid = nn.BatchNorm2d(1)
self.BN_mtype = nn.BatchNorm2d(1)
def forward(self, user_input, movie_input):
# pack train_data
uid = user_input['uid']
gender = user_input['gender']
age = user_input['age']
job = user_input['job']
mid = movie_input['mid']
mtype = movie_input['mtype']
mtext = movie_input['mtext']
if torch.cuda.is_available():
uid, gender, age, job,mid,mtype,mtext = \
uid.to(device), gender.to(device), age.to(device), job.to(device), mid.to(device), mtype.to(device), mtext.to(device)
# user channel
feature_uid = self.BN_uid(F.relu(self.fc_uid(self.embedding_uid(uid))))
feature_gender = self.BN_gender(F.relu(self.fc_gender(self.embedding_gender(gender))))
feature_age = self.BN_age(F.relu(self.fc_age(self.embedding_age(age))))
feature_job = self.BN_job(F.relu(self.fc_job(self.embedding_job(job))))
# feature_user B x 1 x 200
feature_user = F.tanh(self.fc_user_combine(
torch.cat([feature_uid, feature_gender, feature_age, feature_job], 3)
)).view(-1,1,200)
# movie channel
feature_mid = self.BN_mid(F.relu(self.fc_mid(self.embedding_mid(mid))))
feature_mtype = self.BN_mtype(F.relu(self.fc_mtype(self.embedding_mtype_sum(mtype)).view(-1,1,1,32)))
# feature_mid_mtype = torch.cat([feature_mid, feature_mtype], 2)
# text cnn part
feature_img = self.embedding_mwords(mtext) # to matrix B x 15 x 32
flattern_tensors = []
for conv in self.Convs_text:
flattern_tensors.append(conv(feature_img.view(-1,1,15,32)).view(-1,1, 8)) # each tensor: B x 8 x1 x 1 to B x 8
feature_flattern_dropout = F.dropout(torch.cat(flattern_tensors,2), p=0.5) # to B x 32
# feature_movie B x 1 x 200
feature_movie = F.tanh(self.fc_movie_combine(
torch.cat([feature_mid.view(-1,1,32), feature_mtype.view(-1,1,32), feature_flattern_dropout], 2)
))
output = torch.sum(feature_user * feature_movie, 2) # B x rank
return output, feature_user, feature_movie