forked from KID-22/PCIC2021-Baselines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
65 lines (49 loc) · 1.92 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from torch.utils import data
import numpy as np
from metrics import AUC, MAE, MSE, RMSE, MAE_ips, MSE_ips, RMSE_ips
import torch
class MF_DATA(data.Dataset):
def __init__(self, filename):
raw_matrix = np.loadtxt(filename)
self.users_num = int(1000)
self.items_num = int(1720)
self.data = raw_matrix
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.data.shape[0]
class CausE_DATA(data.Dataset):
def __init__(self, s_c_data, s_t_data):
raw_matrix_c = np.loadtxt(s_c_data)
raw_matrix_t = np.loadtxt(s_t_data)
self.s_c = raw_matrix_c
self.s_t = raw_matrix_t
raw_matrix = np.vstack((raw_matrix_c, raw_matrix_t))
self.users_num = int(1000)
self.items_num = int(1720)
self.data = raw_matrix
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.data.shape[0]
def evaluate_model(model, val_data, opt):
true = val_data[:, 2]
user = torch.LongTensor(val_data[:, 0]).to(opt.device)
item = torch.LongTensor(val_data[:, 1]).to(opt.device)
preds = model.predict(user, item).to(opt.device)
mae = MAE(preds, true)
mse = MSE(preds, true)
rmse = RMSE(preds, true)
auc = AUC(true, preds.detach().cpu().numpy())
return mae, mse, rmse, auc
def evaluate_IPS_model(model, val_data, inverse_propensity, opt):
true = val_data[:, 2]
user = torch.LongTensor(val_data[:, 0]).to(opt.device)
user_num = max(user)
item = torch.LongTensor(val_data[:, 1]).to(opt.device)
item_num = max(item)
preds = model.predict(user, item).to(opt.device)
mae = MAE_ips(preds, true, item, user_num, item_num, inverse_propensity)
mse = MSE_ips(preds, true, item, user_num, item_num, inverse_propensity)
rmse = RMSE_ips(preds, true, item, user_num, item_num, inverse_propensity)
return mae, mse, rmse