-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_oe.py
209 lines (170 loc) · 8.64 KB
/
train_oe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
import numpy as np
import argparse
import os
import torchvision.transforms as transforms
import model.densenet as dn
import model.wideresnet as wn
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch.utils.data import DataLoader
from tensorboard_logger import configure
from data_loader.data_loader import CIFAR10DataLoader, CIFAR100DataLoader, SVHNDataLoader
from data_loader.tiny_image_data_loader import TinyImages
from model.oe_metric import OELoss
from data_loader.random_image_data_loader import RandomImages
from trainer.oe_trainer import OETrainer
parser = argparse.ArgumentParser(description='PyTorch DenseNet Training')
parser.add_argument('--gpu', default='1,2,3', type=str, help='which gpu to use')
parser.add_argument('--in-dataset', default="CIFAR-10", type=str, help='in-distribution dataset')
parser.add_argument('--model-arch', default='densenet', type=str, help='model architecture')
parser.add_argument('--auxiliary-dataset', default='300k_random_images',
choices=['80m_tiny_images', 'imagenet'], type=str, help='which auxiliary dataset to use')
parser.add_argument('--beta', default=0.5, type=float, help='beta for out_loss')
parser.add_argument('--epochs', default=100, type=int,
help='number of total epochs to run')
parser.add_argument('--save-epoch', default=10, type=int,
help='save the model every save_epoch')
parser.add_argument('--start-epoch', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=64, type=int,
help='mini-batch size (default: 64)')
parser.add_argument('--ood-batch-size', default=128, type=int,
help='mini-batch size (default: 128)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight-decay', '--wd', default=0.0001, type=float,
help='weight decay (default: 0.0001)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
help='print frequency (default: 10)')
parser.add_argument('--layers', default=100, type=int,
help='total number of layers (default: 100)')
parser.add_argument('--depth', default=40, type=int,
help='depth of resnet')
parser.add_argument('--width', default=4, type=int,
help='width of resnet')
parser.add_argument('--growth', default=12, type=int,
help='number of new channels per layer (default: 12)')
parser.add_argument('--droprate', default=0.0, type=float,
help='dropout probability (default: 0.0)')
parser.add_argument('--no-augment', dest='augment', action='store_false',
help='whether to use standard augmentation (default: True)')
parser.add_argument('--reduce', default=0.5, type=float,
help='compression rate in transition stage (default: 0.5)')
parser.add_argument('--no-bottleneck', dest='bottleneck', action='store_false',
help='To not use bottleneck block')
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--name', required=True, type=str,
help='name of experiment')
parser.add_argument('--tensorboard',
help='Log progress to TensorBoard', action='store_true')
parser.set_defaults(bottleneck=True)
parser.set_defaults(augment=True)
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
print(state)
directory = "checkpoints/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name=args.name)
if not os.path.exists(directory):
os.makedirs(directory)
save_state_file = os.path.join(directory, 'args.txt')
fw = open(save_state_file, 'w')
print(state, file=fw)
fw.close()
torch.manual_seed(1)
np.random.seed(1)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # Arrange GPU devices starting from 0
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main():
if args.tensorboard:
configure("runs/%s" % (args.name))
if args.augment:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
else:
transform_train = transforms.Compose([
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
kwargs = {'num_workers': 1, 'pin_memory': True}
if args.in_dataset == "CIFAR-10":
normalizer = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
data_obj = CIFAR10DataLoader(transform_train=transform_train, transform_test=transform_test, kwargs=kwargs
, args=args)
train_loader, val_loader = data_obj.get_dataloader()
lr_schedule = [50, 75, 90]
num_classes = 10
elif args.in_dataset == "CIFAR-100":
normalizer = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
data_obj = CIFAR100DataLoader(transform_train=transform_train, transform_test=transform_test, kwargs=kwargs
, args=args)
train_loader, val_loader = data_obj.get_dataloader()
lr_schedule = [50, 75, 90]
num_classes = 100
elif args.in_dataset == "SVHN":
normalizer = None
data_obj = SVHNDataLoader(transform_train=transform_train, transform_test=transform_test, kwargs=kwargs
, args=args)
train_loader, val_loader = data_obj.get_dataloader()
args.epochs = 20
args.save_epoch = 2
lr_schedule = [10, 15, 18]
num_classes = 10
else:
assert False, "Check in_dataset's parameter"
if args.auxiliary_dataset == '80m_tiny_images':
ood_loader = DataLoader(
TinyImages(transform=transforms.Compose(
[transforms.ToTensor(), transforms.ToPILImage(), transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(), transforms.ToTensor()])),
batch_size=args.ood_batch_size, shuffle=False, **kwargs)
elif args.auxiliary_dataset == '300k_random_images':
ood_loader = DataLoader(
RandomImages(transform=transforms.Compose(
[transforms.ToTensor(), transforms.ToPILImage(), transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(), transforms.ToTensor()])),
batch_size=args.ood_batch_size, shuffle=False, **kwargs
)
else:
assert False, "Check auxiliary_dataset's parameter"
if args.model_arch == "densenet":
model = dn.DenseNet3(args.layers, num_classes, args.growth, reduction=args.reduce,
bottleneck=args.bottleneck, dropRate=args.droprate, normalizer=normalizer).cuda()
elif args.model_arch == "wideresnet":
model = wn.WideResNet(args.depth, num_classes, widen_factor=args.width, dropRate=args.droprate, normalizer=normalizer).cuda()
else:
assert False, 'Not supported model arch: {}'.format(args.model_arch)
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
# model = model.cuda()
model = torch.nn.DataParallel(model).to(device)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss().cuda()
ood_criterion = OELoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
nesterov=True,
weight_decay=args.weight_decay)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
trainer = OETrainer(train_loader, ood_loader, val_loader, model, criterion, ood_criterion, optimizer, args)
trainer.train()
if __name__ == "__main__":
main()